计算机科学
强化学习
人工智能
马尔可夫决策过程
领域(数学)
机器学习
过程(计算)
生物医学
管理科学
马尔可夫过程
数学
工程类
统计
生物
纯数学
遗传学
操作系统
作者
Xuhan Liu,J Zhang,Zhonghuai Hou,Yi Yang,Yi Qin Gao
摘要
Abstract Reinforcement learning (RL) is one important branch of artificial intelligence (AI), which intuitively imitates the learning style of human beings. It is commonly derived from solving game playing problems and is extensively used for decision‐making, control and optimization problems. It has been extensively applied for solving complicated problems with the property of Markov decision‐making processes. With data accumulation and comprehensive analysis, researchers are not only satisfied with predicting the results for experimental systems but also hope to design or control them for the sake of obtaining the desired properties or functions. RL is potentially facilitated to solve a large number of complicated biological and chemical problems, because they could be decomposed into multi‐step decision‐making process. In practice, substantial progress has been made in the application of RL to the field of biomedicine. In this paper, we will first give a brief description about RL, including its definition, basic theory and different type of methods. Then we will review some detailed applications in various domains, for example, molecular design, reaction planning, molecular simulation and etc. In the end, we will summarize the essentialities of RL approaches to solve more diverse problems compared with other machine learning methods and also outlook the possible trends to overcome their limitations in the future. This article is categorized under: Data Science > Chemoinformatics Data Science > Computer Algorithms and Programming Data Science > Artificial Intelligence/Machine Learning
科研通智能强力驱动
Strongly Powered by AbleSci AI