Conventional and modern markers of pregnancy of unknown location: Update and narrative review

医学 怀孕 逻辑回归 人口 异位妊娠 妊娠期 产科 内科学 生物 遗传学 环境卫生
作者
Likang Hou,Xiaowen Liang,Lingqing Zeng,Li Wang,Zhiyi Chen
出处
期刊:International journal of gynaecology and obstetrics [Wiley]
标识
DOI:10.1002/ijgo.15807
摘要

Abstract Pregnancy of unknown location (PUL) is a temporary pathologic or physiologic phenomenon of early pregnancy that requires follow up to determine the final pregnancy outcome. Evidence indicated that PUL patients suffer a remarkably higher rate of adverse pregnancy outcomes, represented by ectopic gestation and early pregnancy loss, than the general population. In the past few decades, discussion about PUL has never stopped, and a variety of markers have been widely investigated for the early and accurate evaluation of PUL, including serum biomarkers, ultrasound imaging features, multivariate analysis, and the diagnosis of ectopic pregnancy based on risk stratification. So far, machine learning (ML) methods represented by M4 and M6 logistic regression have gained a level of recognition and are continually improving. Nevertheless, the heterogeneity of PUL markers, mainly caused by the limited sample size, the differences in population and technical maturity, etc., have hampered the management of PUL. With the advancement of multidisciplinary integration and cutting‐edge technologies (e.g. artificial intelligence, prediction model development, and telemedicine), novel markers, and strategies for the management of PUL are expected to be developed. In this review, we summarize both conventional and novel markers (represented by artificial intelligence) for PUL assessment and management, investigate their advancements, limitations and challenges, and propose insights on future research direction and clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo完成签到,获得积分10
刚刚
刚刚
CodeCraft应助未来的院士采纳,获得10
刚刚
香蕉觅云应助第一张采纳,获得10
1秒前
jackie完成签到,获得积分20
1秒前
3秒前
4秒前
5秒前
学术垃圾制造者完成签到,获得积分10
7秒前
577610822完成签到,获得积分10
8秒前
wsg发布了新的文献求助10
9秒前
着急的语海完成签到,获得积分10
9秒前
NexusExplorer应助lyj334采纳,获得10
9秒前
李健应助huangyao采纳,获得10
9秒前
9秒前
魏一一发布了新的文献求助10
10秒前
cl完成签到,获得积分10
11秒前
第一张完成签到,获得积分20
12秒前
13秒前
善良的远锋完成签到,获得积分10
13秒前
iNk应助张张采纳,获得10
14秒前
酷波er应助舒心忆山采纳,获得10
14秒前
ww完成签到,获得积分10
14秒前
咚咚完成签到,获得积分20
15秒前
15秒前
ephore应助精明的不凡采纳,获得50
16秒前
煤灰发布了新的文献求助10
16秒前
16秒前
英姑应助羽言采纳,获得10
18秒前
wsg完成签到,获得积分10
19秒前
19秒前
笨笨往事发布了新的文献求助10
20秒前
搜集达人应助料峭声花采纳,获得10
21秒前
刘唐荣发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
24秒前
24秒前
坚强亦丝应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112582
求助须知:如何正确求助?哪些是违规求助? 2762892
关于积分的说明 7672566
捐赠科研通 2418070
什么是DOI,文献DOI怎么找? 1283538
科研通“疑难数据库(出版商)”最低求助积分说明 619423
版权声明 599584