Automatic detection for bioacoustic research: a practical guide from and for biologists and computer scientists

生物声学 计算机科学 领域(数学) 人工智能 数据科学 机器学习 人机交互 数学 电信 纯数学
作者
Arik Kershenbaum,Çağlar Akçay,Lakshmi Babu Saheer,Alex Barnhill,Paul Best,Jules Cauzinille,Dena J. Clink,Angela Dassow,Emmanuel Dufourq,Jonathan Growcott,Andrew Markham,Bárbara Martí-Domken,Ricard Marxer,Jen Muir,S.M. Reynolds,Holly Root‐Gutteridge,Sougata Sadhukhan,Loretta Schindler,Bethany R. Smith,Dan Stowell
出处
期刊:Biological Reviews [Wiley]
被引量:8
标识
DOI:10.1111/brv.13155
摘要

ABSTRACT Recent years have seen a dramatic rise in the use of passive acoustic monitoring (PAM) for biological and ecological applications, and a corresponding increase in the volume of data generated. However, data sets are often becoming so sizable that analysing them manually is increasingly burdensome and unrealistic. Fortunately, we have also seen a corresponding rise in computing power and the capability of machine learning algorithms, which offer the possibility of performing some of the analysis required for PAM automatically. Nonetheless, the field of automatic detection of acoustic events is still in its infancy in biology and ecology. In this review, we examine the trends in bioacoustic PAM applications, and their implications for the burgeoning amount of data that needs to be analysed. We explore the different methods of machine learning and other tools for scanning, analysing, and extracting acoustic events automatically from large volumes of recordings. We then provide a step‐by‐step practical guide for using automatic detection in bioacoustics. One of the biggest challenges for the greater use of automatic detection in bioacoustics is that there is often a gulf in expertise between the biological sciences and the field of machine learning and computer science. Therefore, this review first presents an overview of the requirements for automatic detection in bioacoustics, intended to familiarise those from a computer science background with the needs of the bioacoustics community, followed by an introduction to the key elements of machine learning and artificial intelligence that a biologist needs to understand to incorporate automatic detection into their research. We then provide a practical guide to building an automatic detection pipeline for bioacoustic data, and conclude with a discussion of possible future directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞天土豆完成签到,获得积分20
刚刚
NexusExplorer应助闫HH采纳,获得10
刚刚
刚刚
1秒前
1秒前
李狗太祖完成签到,获得积分10
1秒前
吊袜带完成签到,获得积分10
1秒前
纪大妮完成签到,获得积分20
1秒前
1秒前
HahaLiu发布了新的文献求助30
2秒前
2秒前
qazwsx发布了新的文献求助30
2秒前
熬熬就出头了完成签到,获得积分10
2秒前
英姑应助大方的曼容采纳,获得10
3秒前
4秒前
你好完成签到,获得积分10
4秒前
4秒前
阿海的发布了新的文献求助10
4秒前
棉花羊5041完成签到,获得积分10
4秒前
4秒前
鲤鱼南莲发布了新的文献求助20
6秒前
Vonnie发布了新的文献求助10
6秒前
6秒前
6秒前
万能图书馆应助如风随水采纳,获得10
7秒前
拼搏迎梦完成签到,获得积分10
7秒前
7秒前
7秒前
perfumei发布了新的文献求助30
7秒前
wwhh发布了新的文献求助10
8秒前
远山完成签到 ,获得积分10
8秒前
szmsnail完成签到,获得积分10
9秒前
常昕琦完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
水水水水发布了新的文献求助10
10秒前
Lucas应助aibing采纳,获得10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594