Automatic detection for bioacoustic research: a practical guide from and for biologists and computer scientists

生物声学 计算机科学 领域(数学) 人工智能 数据科学 机器学习 人机交互 数学 电信 纯数学
作者
Arik Kershenbaum,Çağlar Akçay,Lakshmi Babu Saheer,Alex Barnhill,Paul Best,Jules Cauzinille,Dena J. Clink,Angela Dassow,Emmanuel Dufourq,Jonathan Growcott,Andrew Markham,Bárbara Martí-Domken,Ricard Marxer,Jen Muir,S.M. Reynolds,Holly Root‐Gutteridge,Sougata Sadhukhan,Loretta Schindler,Bethany R. Smith,Dan Stowell,Claudia A. F. Wascher,Jacob C. Dunn
出处
期刊:Biological Reviews [Wiley]
标识
DOI:10.1111/brv.13155
摘要

ABSTRACT Recent years have seen a dramatic rise in the use of passive acoustic monitoring (PAM) for biological and ecological applications, and a corresponding increase in the volume of data generated. However, data sets are often becoming so sizable that analysing them manually is increasingly burdensome and unrealistic. Fortunately, we have also seen a corresponding rise in computing power and the capability of machine learning algorithms, which offer the possibility of performing some of the analysis required for PAM automatically. Nonetheless, the field of automatic detection of acoustic events is still in its infancy in biology and ecology. In this review, we examine the trends in bioacoustic PAM applications, and their implications for the burgeoning amount of data that needs to be analysed. We explore the different methods of machine learning and other tools for scanning, analysing, and extracting acoustic events automatically from large volumes of recordings. We then provide a step‐by‐step practical guide for using automatic detection in bioacoustics. One of the biggest challenges for the greater use of automatic detection in bioacoustics is that there is often a gulf in expertise between the biological sciences and the field of machine learning and computer science. Therefore, this review first presents an overview of the requirements for automatic detection in bioacoustics, intended to familiarise those from a computer science background with the needs of the bioacoustics community, followed by an introduction to the key elements of machine learning and artificial intelligence that a biologist needs to understand to incorporate automatic detection into their research. We then provide a practical guide to building an automatic detection pipeline for bioacoustic data, and conclude with a discussion of possible future directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有魅力的语梦完成签到,获得积分10
刚刚
酷波er应助负责丹亦采纳,获得10
刚刚
刚刚
刚刚
1秒前
Ava应助xyy采纳,获得10
1秒前
gs发布了新的文献求助10
1秒前
英俊的慕青完成签到 ,获得积分10
2秒前
合适映之发布了新的文献求助10
3秒前
zl应助飞快的梦易采纳,获得30
3秒前
完美世界应助zhangjh采纳,获得10
4秒前
4秒前
乐乐应助Doctor-C采纳,获得10
4秒前
耶耶耶完成签到,获得积分10
5秒前
luckss发布了新的文献求助10
5秒前
旺仔发布了新的文献求助20
5秒前
英俊的铭应助豆豆采纳,获得10
6秒前
Richard完成签到 ,获得积分20
6秒前
lan发布了新的文献求助20
6秒前
7秒前
NexusExplorer应助合适映之采纳,获得10
8秒前
8秒前
鹌鹑131完成签到,获得积分10
8秒前
彭于晏应助沐沐采纳,获得10
10秒前
慕青应助酷酷觅夏采纳,获得10
10秒前
橙子发布了新的文献求助10
10秒前
zhangjh完成签到,获得积分10
10秒前
10秒前
10秒前
lyyt完成签到,获得积分20
10秒前
共享精神应助刘姝彤采纳,获得10
11秒前
bkagyin应助123采纳,获得10
11秒前
11秒前
甜甜完成签到,获得积分10
12秒前
傲娇的咖啡豆完成签到,获得积分10
12秒前
13秒前
Thomas发布了新的文献求助10
13秒前
orixero应助活力寻菱采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559210
求助须知:如何正确求助?哪些是违规求助? 3133831
关于积分的说明 9404212
捐赠科研通 2834006
什么是DOI,文献DOI怎么找? 1557743
邀请新用户注册赠送积分活动 727651
科研通“疑难数据库(出版商)”最低求助积分说明 716383