Image segmentation of tunnel water leakage defects in complex environments using an improved Unet model

泄漏(经济) 计算机科学 分割 人工智能 漏水 计算机视觉 模式识别(心理学) 材料科学 复合材料 经济 宏观经济学
作者
P. Wang,Guigang Shi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-75723-4
摘要

Computer vision technology provides an intelligent means for detecting tunnel water leakage areas. However, the accuracy of defect feature extraction and segmentation is limited by factors such as insufficient lighting and environmental interference inside tunnels. To address the problem, this paper proposes a tunnel water leakage area segmentation network model called Customized Side Guided-Unet (CSG-Unet), using Unet as the baseline model. The main contributions are: (1) To improve the accuracy of water leakage area extraction, a customized side guided term is introduced to direct the net's attention to the changes in light and shade within the image. A parallel attention network module is designed to extract internal information from the guided term. Subsequently, a strengthened channel attention module aggregates the guided term and the original information to achieve accurate segmentation of water leakage areas; (2) To address the scarcity of tunnel water leakage area datasets, a basic dataset is constructed by collecting data from open-source datasets and manually gathered data in tunnels. On this basis, perspective transformation is used to change the camera viewpoint, gaussian noise is randomly added to the images in the dataset to simulate images taken in dimly lit scenes, thereby expanding the dataset and enhancing the network's generalization. The CSG-Unet network was trained using the constructed training set, achieving a mean Intersection over Union (mi IoU) of 85.54%, a mean Dice coefficient (mi Dice) of 85.26%, and a mean Pixel Accuracy (mi PA) of 90.85%. Compared to its baseline network, U-Net (tiny), these metrics show an improvement of over 3.2% in each indicator. Finally, a visual comparison between the improved network and the baseline network further confirms that the proposed model can effectively adapt to the segmentation of water leakage areas in complex environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
刚刚
迪尼希斯发布了新的文献求助10
1秒前
2秒前
2秒前
ZX完成签到,获得积分10
4秒前
ryota发布了新的文献求助10
4秒前
5秒前
上官若男应助白云朵儿采纳,获得10
5秒前
墨鱼完成签到,获得积分10
7秒前
能干冰菱发布了新的文献求助10
7秒前
钱钱钱完成签到,获得积分10
7秒前
牛雨桐发布了新的文献求助10
7秒前
cathy完成签到,获得积分10
7秒前
9秒前
tang发布了新的文献求助10
10秒前
bkagyin应助陈露佳采纳,获得10
10秒前
11秒前
11秒前
顾矜应助qwe采纳,获得10
11秒前
Neon发布了新的文献求助10
11秒前
与树常青完成签到,获得积分20
12秒前
12秒前
13秒前
amll发布了新的文献求助10
13秒前
Louki完成签到 ,获得积分10
14秒前
慕青应助wsh采纳,获得10
14秒前
LL完成签到,获得积分10
15秒前
tang完成签到,获得积分10
17秒前
ryota完成签到,获得积分10
17秒前
科研通AI5应助潇潇微雨采纳,获得10
17秒前
科研通AI5应助潇潇微雨采纳,获得10
18秒前
科研通AI5应助潇潇微雨采纳,获得10
18秒前
cjjj应助潇潇微雨采纳,获得10
18秒前
科研通AI5应助潇潇微雨采纳,获得10
18秒前
紧张的芷发布了新的文献求助10
18秒前
科研通AI5应助潇潇微雨采纳,获得10
18秒前
善学以致用应助潇潇微雨采纳,获得10
18秒前
18秒前
18秒前
思源应助陈露佳采纳,获得200
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514812
求助须知:如何正确求助?哪些是违规求助? 3097140
关于积分的说明 9234298
捐赠科研通 2792136
什么是DOI,文献DOI怎么找? 1532287
邀请新用户注册赠送积分活动 711947
科研通“疑难数据库(出版商)”最低求助积分说明 707045