Data Imbalance Bearing Fault Diagnosis Based on Fusion Attention Mechanism and Global Feature Cross GAN Network

机制(生物学) 方位(导航) 断层(地质) 特征(语言学) 融合 计算机科学 数据挖掘 模式识别(心理学) 人工智能 地质学 物理 地震学 语言学 量子力学 哲学
作者
Xiaozhuo Xu,X.Q. Chen,Yunji Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106136-106136
标识
DOI:10.1088/1361-6501/ad64f5
摘要

Abstract As one of the important equipment of motor transmission, bearings play an important role in the production and manufacturing industry, if there are problems in the manufacturing process will bring significant economic losses or even endanger personal safety, so its state prediction and fault diagnosis is of great significance. In bearing fault diagnosis, it is a challenge to eliminate the effect of data imbalance on fault diagnosis. Generative adversarial network (GAN) networks have achieved some success in data imbalance fault diagnosis, but GAN networks suffer from sample generation bias when balancing samples. To solve this problem, fusion attention mechanism and global feature cross GAN networks is proposed. Firstly, the spatial channel fusion attention mechanism is added to the generator, so that the generator selectively amplifies and processes sample features from different regions, which helps the generator learn more representative features from a few categories; secondly, the global feature cross module is added to the discriminator, so that the discriminator efficiently extracts features from different samples, and improves its ability of recognizing the sample discrepancy; at the same time, in order to improve the model’s anti-noise ability, an anti-noise module is added to the discriminator to improve the efficiency of the model’s data imbalance fault diagnosis; finally, this paper’s method is validated by using two public bearing datasets and one self-constructed dataset. The experimental results prove that this method can effectively overcome the effect of data imbalance on GAN networks, and has a high accuracy rate in real industrial fault diagnosis tasks, what’s more, it proves that the method in this paper has a very good anti-noise performance and practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sepsp发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助ely采纳,获得10
4秒前
7秒前
haowu发布了新的文献求助10
7秒前
xiaoyemao完成签到,获得积分10
8秒前
10秒前
茹果果发布了新的文献求助10
11秒前
11秒前
小蝶发布了新的文献求助10
13秒前
微笑完成签到,获得积分10
13秒前
秃头医生完成签到,获得积分10
13秒前
VDC发布了新的文献求助10
14秒前
16秒前
在水一方应助一年八篇sci采纳,获得10
16秒前
18秒前
18秒前
22秒前
星辰大海应助阿治采纳,获得10
22秒前
23秒前
xiayiyi完成签到 ,获得积分10
24秒前
25秒前
27秒前
27秒前
俊熙C发布了新的文献求助10
27秒前
宇文三德发布了新的文献求助10
28秒前
29秒前
李爱国应助左丘以莲采纳,获得10
29秒前
科研通AI2S应助能干世界采纳,获得10
30秒前
加油冲冲冲完成签到,获得积分10
31秒前
陈住气发布了新的文献求助10
32秒前
32秒前
空气完成签到 ,获得积分10
33秒前
技术的不能发表完成签到 ,获得积分10
33秒前
念工人发布了新的文献求助10
33秒前
ZERO发布了新的文献求助10
34秒前
oceanao应助Hoodie采纳,获得10
34秒前
你说的都对完成签到,获得积分10
36秒前
39秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228