已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data Imbalance Bearing Fault Diagnosis Based on Fusion Attention Mechanism and Global Feature Cross GAN Network

机制(生物学) 方位(导航) 断层(地质) 特征(语言学) 融合 计算机科学 数据挖掘 模式识别(心理学) 人工智能 地质学 物理 地震学 语言学 量子力学 哲学
作者
Xiaozhuo Xu,X.Q. Chen,Yunji Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106136-106136
标识
DOI:10.1088/1361-6501/ad64f5
摘要

Abstract As one of the important equipment of motor transmission, bearings play an important role in the production and manufacturing industry, if there are problems in the manufacturing process will bring significant economic losses or even endanger personal safety, so its state prediction and fault diagnosis is of great significance. In bearing fault diagnosis, it is a challenge to eliminate the effect of data imbalance on fault diagnosis. Generative adversarial network (GAN) networks have achieved some success in data imbalance fault diagnosis, but GAN networks suffer from sample generation bias when balancing samples. To solve this problem, fusion attention mechanism and global feature cross GAN networks is proposed. Firstly, the spatial channel fusion attention mechanism is added to the generator, so that the generator selectively amplifies and processes sample features from different regions, which helps the generator learn more representative features from a few categories; secondly, the global feature cross module is added to the discriminator, so that the discriminator efficiently extracts features from different samples, and improves its ability of recognizing the sample discrepancy; at the same time, in order to improve the model’s anti-noise ability, an anti-noise module is added to the discriminator to improve the efficiency of the model’s data imbalance fault diagnosis; finally, this paper’s method is validated by using two public bearing datasets and one self-constructed dataset. The experimental results prove that this method can effectively overcome the effect of data imbalance on GAN networks, and has a high accuracy rate in real industrial fault diagnosis tasks, what’s more, it proves that the method in this paper has a very good anti-noise performance and practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助大力的绝悟采纳,获得10
刚刚
1秒前
5秒前
5秒前
英勇的婷子完成签到,获得积分10
8秒前
HoHo完成签到 ,获得积分10
8秒前
oo发布了新的文献求助10
8秒前
11秒前
大力的书南完成签到,获得积分10
12秒前
12秒前
科研通AI5应助ceicic采纳,获得10
15秒前
15秒前
lzsz2021发布了新的文献求助10
16秒前
WUYONGSHUAI发布了新的文献求助100
17秒前
可爱的函函应助罐装采纳,获得10
18秒前
9999发布了新的文献求助100
18秒前
wangyi发布了新的文献求助10
21秒前
22秒前
善学以致用应助jia采纳,获得10
23秒前
echopussy应助蓝桉采纳,获得10
24秒前
26秒前
爆米花应助A3000采纳,获得10
27秒前
27秒前
jia完成签到,获得积分20
27秒前
28秒前
9999完成签到,获得积分10
29秒前
30秒前
今后应助丢丢在吗采纳,获得10
30秒前
ceicic发布了新的文献求助10
31秒前
小白完成签到,获得积分10
31秒前
oo完成签到,获得积分10
32秒前
zzz发布了新的文献求助10
35秒前
望仔牛奶发布了新的文献求助10
36秒前
赘婿应助WUYONGSHUAI采纳,获得15
38秒前
8R60d8应助科研通管家采纳,获得10
41秒前
代SR应助科研通管家采纳,获得10
41秒前
香芋应助科研通管家采纳,获得20
41秒前
pcr163应助科研通管家采纳,获得50
41秒前
大模型应助科研通管家采纳,获得10
42秒前
42秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725119
求助须知:如何正确求助?哪些是违规求助? 3270218
关于积分的说明 9965062
捐赠科研通 2985172
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747164