Discovery of Cyclic Peptide Inhibitors Targeted on TNFα-TNFR1 from Computational Design and Bioactivity Verification

半胱氨酸 化学 肿瘤坏死因子α 环肽 类风湿性关节炎 药物发现 肿瘤坏死因子受体1 药理学 受体 计算生物学 生物化学 肿瘤坏死因子受体 医学 生物 免疫学
作者
Jiangnan Zhang,Huijian Zhao,Qianqian Zhou,Xiaoyue Yang,Haoran Qi,Yongxing Zhao,Longhua Yang
出处
期刊:Molecules [MDPI AG]
卷期号:29 (21): 5147-5147
标识
DOI:10.3390/molecules29215147
摘要

Activating tumor necrosis factor receptor 1 (TNFR1) with tumor necrosis factor alpha (TNFα) is one of the key pathological mechanisms resulting in the exacerbation of rheumatoid arthritis (RA) immune response. Despite various types of drugs being available for the treatment of RA, a series of shortcomings still limits their application. Therefore, developing novel peptide drugs that target TNFα-TNFR1 interaction is expected to expand therapeutic drug options. In this study, the detailed interaction mechanism between TNFα and TNFR1 was elucidated, based on which, a series of linear peptides were initially designed. To overcome its large conformational flexibility, two different head-to-tail cyclization strategies were adopted by adding a proline-glycine (GP) or cysteine-cysteine (CC) to form an amide or disulfide bond between the N-C terminal. The results indicate that two cyclic peptides, R1_CC4 and α_CC8, exhibit the strongest binding free energies. α_CC8 was selected for further optimization using virtual mutations through in vitro activity and toxicity experiments due to its optimal biological activity. The L16R mutant was screened, and its binding affinity to TNFR1 was validated using ELISA assays. This study designed a novel cyclic peptide structure with potential anti-inflammatory properties, possibly bringing an additional choice for the treatment of RA in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
flysky120发布了新的文献求助10
3秒前
starry发布了新的文献求助10
3秒前
王乐乐发布了新的文献求助10
4秒前
5秒前
6秒前
我不吃牛肉完成签到,获得积分10
6秒前
852应助王哲采纳,获得10
7秒前
科研通AI2S应助iwjlkdjalkjc采纳,获得10
7秒前
可爱的函函应助pasdzxcfvgb采纳,获得10
7秒前
无心的璎发布了新的文献求助30
7秒前
7秒前
bkagyin应助whj采纳,获得10
8秒前
情怀应助猜猜我是谁采纳,获得10
8秒前
乐乐应助冬瓜采纳,获得10
8秒前
9秒前
12秒前
林夕与研完成签到,获得积分10
12秒前
猜猜我是谁完成签到,获得积分10
13秒前
深情安青应助兔宝宝采纳,获得10
14秒前
15秒前
CipherSage应助LLSSLL采纳,获得10
16秒前
lijuan应助zuoyou采纳,获得10
16秒前
16秒前
可可期发布了新的文献求助10
17秒前
17秒前
fiona完成签到,获得积分10
19秒前
19秒前
咚咚咚发布了新的文献求助10
20秒前
wyk发布了新的文献求助10
20秒前
Ustinian完成签到,获得积分10
21秒前
归尘应助林夕与研采纳,获得10
21秒前
zz发布了新的文献求助20
21秒前
23秒前
充电宝应助cc陈采纳,获得10
24秒前
23发布了新的文献求助60
25秒前
prosperp应助albertxin采纳,获得10
26秒前
27秒前
28秒前
我是萨比完成签到,获得积分10
28秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416658
求助须知:如何正确求助?哪些是违规求助? 3018516
关于积分的说明 8884356
捐赠科研通 2705781
什么是DOI,文献DOI怎么找? 1483926
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681022