Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information

计算机科学 环境科学
作者
Guannan Lei,Peng Guan,Yili Zheng,Jinjie Zhou,Xingquan Shen
出处
期刊:Forests [Multidisciplinary Digital Publishing Institute]
卷期号:15 (9): 1559-1559
标识
DOI:10.3390/f15091559
摘要

Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到,获得积分10
刚刚
顾暖完成签到,获得积分10
1秒前
Zhanghh87应助xiaowang采纳,获得10
2秒前
2秒前
柏林寒冬应助稳重傲柔采纳,获得10
2秒前
zy3637完成签到,获得积分10
2秒前
3秒前
pencil123完成签到,获得积分10
3秒前
lelelele完成签到,获得积分10
3秒前
Anyemzl完成签到,获得积分10
4秒前
濮阳元正发布了新的文献求助10
4秒前
zpf完成签到,获得积分10
4秒前
MT完成签到 ,获得积分10
4秒前
5秒前
wujiao完成签到,获得积分10
5秒前
缓慢易云完成签到,获得积分20
5秒前
善学以致用应助PsyQin采纳,获得10
5秒前
一路向南发布了新的文献求助10
6秒前
该换手机完成签到,获得积分20
6秒前
NexusExplorer应助无限黎云采纳,获得10
6秒前
紫薯球完成签到,获得积分10
6秒前
7秒前
7秒前
无花果应助bunny采纳,获得10
7秒前
8秒前
8秒前
8秒前
poke完成签到,获得积分10
9秒前
搞怪远侵发布了新的文献求助10
9秒前
濮阳元正完成签到,获得积分10
9秒前
10秒前
10秒前
哎哟你干嘛完成签到,获得积分10
10秒前
10秒前
lfh66662发布了新的文献求助10
10秒前
冷傲含海发布了新的文献求助10
11秒前
一路向南完成签到 ,获得积分10
11秒前
CAOHOU应助小白采纳,获得10
12秒前
研友_Ljqal8发布了新的文献求助200
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074