Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information

计算机科学 环境科学
作者
Guannan Lei,Peng Guan,Yili Zheng,Jinjie Zhou,Xingquan Shen
出处
期刊:Forests [MDPI AG]
卷期号:15 (9): 1559-1559
标识
DOI:10.3390/f15091559
摘要

Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
木木发布了新的文献求助30
3秒前
木泽发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
雾1206发布了新的文献求助10
6秒前
英俊的铭应助小木林采纳,获得10
7秒前
无极微光发布了新的文献求助20
7秒前
华仔应助123456采纳,获得10
7秒前
11秒前
12秒前
Ccccsa完成签到,获得积分20
13秒前
乐乐应助石榴汁的书采纳,获得10
13秒前
14秒前
14秒前
怕孤单的绝义完成签到,获得积分10
14秒前
顺利寻真发布了新的文献求助20
15秒前
16秒前
英俊的铭应助无极微光采纳,获得10
16秒前
失眠洋葱发布了新的文献求助10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
pluto应助ZX采纳,获得10
18秒前
19秒前
小木林发布了新的文献求助10
19秒前
sunny发布了新的文献求助10
20秒前
21秒前
hzt完成签到,获得积分20
22秒前
JM关闭了JM文献求助
22秒前
辛勤的绮琴完成签到,获得积分10
24秒前
无极微光发布了新的文献求助10
26秒前
木泽完成签到,获得积分10
26秒前
科研通AI6应助hzt采纳,获得10
27秒前
小木林完成签到,获得积分10
27秒前
27秒前
天苍野茫发布了新的文献求助10
28秒前
28秒前
asd应助kexian_ning采纳,获得30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031