Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information

计算机科学 环境科学
作者
Guannan Lei,Peng Guan,Yili Zheng,Jinjie Zhou,Xingquan Shen
出处
期刊:Forests [MDPI AG]
卷期号:15 (9): 1559-1559
标识
DOI:10.3390/f15091559
摘要

Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xxxnnian完成签到,获得积分20
1秒前
fancy发布了新的文献求助10
1秒前
apple完成签到,获得积分10
1秒前
1秒前
oldlee发布了新的文献求助10
2秒前
斜杠武发布了新的文献求助10
2秒前
毕业就好发布了新的文献求助10
2秒前
wusanlinshi完成签到,获得积分20
3秒前
娜行发布了新的文献求助10
3秒前
大雄完成签到,获得积分10
3秒前
kai发布了新的文献求助10
4秒前
科研通AI5应助老西瓜采纳,获得10
4秒前
核弹完成签到 ,获得积分10
4秒前
kevin完成签到,获得积分10
5秒前
Chem is try发布了新的文献求助10
5秒前
皖医梁朝伟完成签到 ,获得积分10
5秒前
汉堡包应助野性的南蕾采纳,获得10
5秒前
5秒前
便宜小师傅完成签到 ,获得积分10
6秒前
霏冉完成签到,获得积分10
6秒前
7秒前
Grayball应助包容的剑采纳,获得10
7秒前
董小天天完成签到,获得积分10
7秒前
7秒前
华仔应助qym采纳,获得10
7秒前
琅琊为刃完成签到,获得积分10
8秒前
酷波er应助hhh采纳,获得10
8秒前
8秒前
小巧的香氛完成签到 ,获得积分10
9秒前
9秒前
9秒前
zxcv23发布了新的文献求助10
9秒前
没有名称发布了新的文献求助10
9秒前
10秒前
10秒前
zier完成签到 ,获得积分10
11秒前
阡陌完成签到,获得积分10
11秒前
华仔应助毕业就好采纳,获得10
11秒前
liyi发布了新的文献求助10
11秒前
难过小天鹅完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672