Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation.