Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information

计算机科学 环境科学
作者
Guannan Lei,Peng Guan,Yili Zheng,Jinjie Zhou,Xingquan Shen
出处
期刊:Forests [MDPI AG]
卷期号:15 (9): 1559-1559
标识
DOI:10.3390/f15091559
摘要

Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HITvagary完成签到,获得积分0
1秒前
梁寒发布了新的文献求助10
4秒前
默默发布了新的文献求助10
7秒前
dwbh完成签到,获得积分10
10秒前
csu_zs完成签到,获得积分10
17秒前
意寒完成签到,获得积分10
19秒前
突突突完成签到 ,获得积分10
19秒前
我不是哪吒完成签到 ,获得积分10
20秒前
wangfang0228完成签到 ,获得积分10
25秒前
应俊完成签到 ,获得积分0
27秒前
折柳完成签到 ,获得积分10
27秒前
星辰大海应助123采纳,获得30
27秒前
明理的亦寒完成签到 ,获得积分10
28秒前
bkagyin应助默默采纳,获得10
28秒前
Позовименя完成签到,获得积分10
29秒前
harden9159完成签到,获得积分10
30秒前
刻苦羽毛完成签到,获得积分10
31秒前
36秒前
派大星和海绵宝宝完成签到 ,获得积分10
38秒前
41秒前
大意的火龙果完成签到 ,获得积分10
42秒前
百事可爱完成签到 ,获得积分10
43秒前
研友_5Zl4VZ完成签到,获得积分10
43秒前
cc66发布了新的文献求助10
44秒前
minuxSCI完成签到,获得积分10
46秒前
逆光完成签到 ,获得积分10
47秒前
ashin17发布了新的文献求助10
49秒前
AliEmbark发布了新的文献求助10
50秒前
jiangjiang完成签到 ,获得积分10
50秒前
cc66完成签到 ,获得积分10
55秒前
嘲鸫完成签到,获得积分10
1分钟前
zhaoman完成签到,获得积分10
1分钟前
彼得大帝完成签到,获得积分10
1分钟前
tatawo28完成签到 ,获得积分10
1分钟前
可爱的香菇完成签到 ,获得积分10
1分钟前
再次追逐夏天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
内向凌波完成签到 ,获得积分10
1分钟前
庾尔风发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866758
求助须知:如何正确求助?哪些是违规求助? 6426838
关于积分的说明 15654966
捐赠科研通 4981749
什么是DOI,文献DOI怎么找? 2686737
邀请新用户注册赠送积分活动 1629553
关于科研通互助平台的介绍 1587550