Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information

计算机科学 环境科学
作者
Guannan Lei,Peng Guan,Yili Zheng,Jinjie Zhou,Xingquan Shen
出处
期刊:Forests [MDPI AG]
卷期号:15 (9): 1559-1559
标识
DOI:10.3390/f15091559
摘要

Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
茜茜发布了新的文献求助10
1秒前
情怀应助阿末采纳,获得10
1秒前
easy发布了新的文献求助10
2秒前
2秒前
Jasper应助YK采纳,获得10
3秒前
小二郎应助loong采纳,获得10
3秒前
3秒前
陈紫君发布了新的文献求助10
4秒前
Ting222完成签到,获得积分10
4秒前
4秒前
聪明短靴发布了新的文献求助10
5秒前
啊薛薛薛完成签到,获得积分10
6秒前
6秒前
qidais完成签到,获得积分10
7秒前
wanci应助Gzb采纳,获得10
7秒前
温柔的中蓝完成签到,获得积分10
7秒前
月夙发布了新的文献求助20
8秒前
8秒前
小队长爬山完成签到,获得积分10
9秒前
Miko发布了新的文献求助10
10秒前
清风发布了新的文献求助10
11秒前
11秒前
聪明短靴完成签到,获得积分10
11秒前
李健应助卿十采纳,获得20
12秒前
Yuhong给Yuhong的求助进行了留言
12秒前
12秒前
boging完成签到 ,获得积分10
12秒前
科研通AI2S应助孤星独韵采纳,获得10
13秒前
英俊智宸完成签到,获得积分10
13秒前
13秒前
跳跃仙人掌应助孟祥飞采纳,获得50
13秒前
我不知道a完成签到,获得积分10
14秒前
Jasper应助easy采纳,获得10
14秒前
aprilvanilla应助南风不竞采纳,获得10
15秒前
loong发布了新的文献求助10
15秒前
15秒前
小鱼发布了新的文献求助10
16秒前
physicalproblem完成签到,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259243
求助须知:如何正确求助?哪些是违规求助? 2900914
关于积分的说明 8312916
捐赠科研通 2570200
什么是DOI,文献DOI怎么找? 1396285
科研通“疑难数据库(出版商)”最低求助积分说明 653468
邀请新用户注册赠送积分活动 631476