Evaluation of Lie Detection Techniques: Overview

测谎 计算机科学 心理学 社会心理学 欺骗
作者
Zena Tarik Mohammed,Ielaf O. Abdul Majjed Dahl
出处
期刊:Revue d'intelligence artificielle [International Information and Engineering Technology Association]
卷期号:38 (4): 1361-1367
标识
DOI:10.18280/ria.380430
摘要

Recently, the need to separate truth from lies has motivated lie detection as a constant human endeavor; therefore there is a need to develop lie detection techniques and focus on the new area of lie detection utilizing facial expression.Human faces are a powerful repository of emotions in the complicated interaction between verbal and non-verbal clues that characterize human communication.From this micro-expression, the transitory emotion discloses the more prominent indicators that precede deceitful behavior, which makes the tapestry rich in information that can be harnessed to detect a lie.Historically, the development of deceiving lies passed through many developments to find the best way to get high performance, but the development of artificial intelligence and face recognition has further altered the landscape of lie detection.In this paper, the reason for lie detection is revealed with the techniques used to detect lies.The paper aims to present and survey the techniques with comparison used to detect lies, which will highlight the importance of this topic and urge researchers to develop current techniques or find other related techniques that serve the issue.The presentation of the techniques in this research revealed that the lie detection technique using facial expressions is considered the best technique to achieve the detection of lies.Facial expression is the most efficient because it does not require physical contact and because they are visual of real internal feelings and not voluntary movements, and computer vision and artificial intelligence have had an effective role in supporting this method and exploiting it optimally.Finally, the paper shows the limitations and achievements that the researchers found in their research to help researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到,获得积分10
1秒前
我的白起是国服完成签到 ,获得积分10
2秒前
科研狗发布了新的文献求助10
2秒前
阳光完成签到,获得积分10
2秒前
3秒前
一锅炖不下完成签到 ,获得积分10
4秒前
4秒前
Harish完成签到,获得积分10
5秒前
草原狼完成签到,获得积分10
7秒前
非洲饿龟完成签到,获得积分10
7秒前
liuz53完成签到,获得积分20
8秒前
huangyi发布了新的文献求助10
8秒前
8秒前
淡然觅荷完成签到 ,获得积分10
8秒前
9秒前
9秒前
花城发布了新的文献求助10
9秒前
欢喜沁完成签到,获得积分10
10秒前
11秒前
和成完成签到,获得积分10
11秒前
刘静关注了科研通微信公众号
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
haix应助科研通管家采纳,获得10
13秒前
诚心中恶发布了新的文献求助10
13秒前
旧辞应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Crema完成签到,获得积分10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
魚子应助科研通管家采纳,获得30
13秒前
慕青应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
sciDoge应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970