亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Lie Detection Techniques: Overview

测谎 计算机科学 心理学 社会心理学 欺骗
作者
Zena Tarik Mohammed,Ielaf O. Abdul Majjed Dahl
出处
期刊:Revue d'intelligence artificielle [International Information and Engineering Technology Association]
卷期号:38 (4): 1361-1367
标识
DOI:10.18280/ria.380430
摘要

Recently, the need to separate truth from lies has motivated lie detection as a constant human endeavor; therefore there is a need to develop lie detection techniques and focus on the new area of lie detection utilizing facial expression.Human faces are a powerful repository of emotions in the complicated interaction between verbal and non-verbal clues that characterize human communication.From this micro-expression, the transitory emotion discloses the more prominent indicators that precede deceitful behavior, which makes the tapestry rich in information that can be harnessed to detect a lie.Historically, the development of deceiving lies passed through many developments to find the best way to get high performance, but the development of artificial intelligence and face recognition has further altered the landscape of lie detection.In this paper, the reason for lie detection is revealed with the techniques used to detect lies.The paper aims to present and survey the techniques with comparison used to detect lies, which will highlight the importance of this topic and urge researchers to develop current techniques or find other related techniques that serve the issue.The presentation of the techniques in this research revealed that the lie detection technique using facial expressions is considered the best technique to achieve the detection of lies.Facial expression is the most efficient because it does not require physical contact and because they are visual of real internal feelings and not voluntary movements, and computer vision and artificial intelligence have had an effective role in supporting this method and exploiting it optimally.Finally, the paper shows the limitations and achievements that the researchers found in their research to help researchers in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
17秒前
Ecokarster完成签到,获得积分10
29秒前
楚楚完成签到 ,获得积分10
33秒前
所所应助鳄鱼不做饿梦采纳,获得50
34秒前
111完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
田様应助郭楠楠采纳,获得30
1分钟前
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
郭楠楠发布了新的文献求助30
2分钟前
2分钟前
Xyyy完成签到,获得积分10
2分钟前
RED发布了新的文献求助10
2分钟前
满天星发布了新的文献求助10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
缨绒完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
满天星完成签到 ,获得积分10
4分钟前
zqr发布了新的文献求助10
4分钟前
Hello应助Raunio采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
abdo完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
小蘑菇应助成太采纳,获得10
5分钟前
万能图书馆应助zxl采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
郭楠楠发布了新的文献求助10
5分钟前
5分钟前
清泉发布了新的文献求助10
5分钟前
5分钟前
成太发布了新的文献求助10
5分钟前
zxl发布了新的文献求助10
5分钟前
CodeCraft应助郭楠楠采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385