A Cross-Client Coordinator in Federated Learning Framework for Conquering Heterogeneity

计算机科学 联合学习 分布式计算
作者
Sheng Huang,Lele Fu,Yuecheng Li,Chuan Chen,Zibin Zheng,Hong‐Ning Dai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3439878
摘要

Federated learning, as a privacy-preserving learning paradigm, restricts the access to data of each local client, for protecting the privacy of the parties. However, in the case of heterogeneous data settings, the different data distributions among clients usually lead to the divergence of learning targets, which is an essential challenge for federated learning. In this article, we propose a federated learning framework with a unified coding space, called FedUCS, for learning cross-client uniform coding rules to solve the problem of divergent targets among multiple clients due to heterogeneous data. A cross-client coordinator co-trained by multiple clients is used as a criterion of the coding space to supervise all clients coding to a uniform space, which is the significant contribution of this article. Furthermore, in order to appropriately retain historical information and avoid forgetting previous knowledge, a partial memory mechanism is applied. Moreover, in order to further enhance the distinguishability of the unified encoding space, supervised contrastive learning is used to avoid the intersection of the encoding spaces belonging to different categories. A series of experiments are performed to verify the effectiveness of the proposed method in a federated learning setting with heterogeneous data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
小明同学发布了新的文献求助10
1秒前
Micheal发布了新的文献求助10
1秒前
1秒前
1秒前
感谢HouYv转发科研通微信,获得积分50
2秒前
简单灵凡发布了新的文献求助10
3秒前
出门见喜发布了新的文献求助10
3秒前
感谢张茜转发科研通微信,获得积分50
5秒前
芒果与鱼完成签到,获得积分10
6秒前
不再褪色发布了新的文献求助10
6秒前
purplemoon发布了新的文献求助10
6秒前
高高可乐发布了新的文献求助20
6秒前
7秒前
8秒前
8秒前
感谢WU转发科研通微信,获得积分50
8秒前
wanci应助小明同学采纳,获得10
9秒前
彭于晏应助出门见喜采纳,获得10
9秒前
潘森爱科研完成签到,获得积分10
9秒前
9秒前
10秒前
smile完成签到,获得积分10
10秒前
顾矜应助酱er采纳,获得30
10秒前
简单灵凡完成签到,获得积分10
10秒前
fjh应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
感谢666转发科研通微信,获得积分50
12秒前
wanci应助科研通管家采纳,获得10
12秒前
听话的画板完成签到,获得积分20
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814