Driving Intention Recognition Model for Highway Ramp-Merging Scene

计算机科学 隐马尔可夫模型 弹道 离群值 支持向量机 混合模型 人工智能 实时计算 物理 天文
作者
You Ren,Xiyao Wang,Jiaqi Song,Wen-Yang Lu,Penglong Li,Shangke Li
出处
期刊:SAE international journal of connected and automated vehicles 卷期号:8 (2)
标识
DOI:10.4271/12-08-02-0016
摘要

<div>Driving safety in the mixed traffic state of autonomous vehicles and conventional vehicles has always been an important research topic, especially on highways where autonomous driving technology is being more widely adopted. The merging scenario at highway ramps poses high risks with frequent vehicle conflicts, often stemming from misperceived intentions [<span>1</span>].</div> <div>This study focuses on autonomous and conventional vehicles in merging scenarios, where timely recognition of lane-changing intentions can enhance merging efficiency and reduce accidents. First, trajectory data of merging vehicles and their conflicting vehicles were extracted from the NGSIM open-source database in the I-80 section. The segmented cubic polynomial interpolation method and Savitzky–Golay filtering are utilized for data outlier removal and noise reduction. Second, the processed trajectory data were used as input to a hybrid Gaussian hidden Markov (GMM-HMM) model for driving intention classification, specifically lane-change collision-avoidance and lane keeping. The K-means algorithm is used to initialize the model parameters, and the expectation–maximization (EM) algorithm is employed for parameter iteration. Finally, through validation on the testing set, the mixed Gaussian hidden Markov model achieves a lane-change intention recognition accuracy of over 95% for conflicting vehicles and outperforms the support vector machines (SVM) model and the long–short-term memory (LSTM) network. It can be applied to the humanized design of intelligent vehicle lane-change strategies, effectively reducing lane-change risks and improving driving safety.</div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无所谓的所谓完成签到,获得积分10
1秒前
ZHIXIANGWENG发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
AHAO发布了新的文献求助30
3秒前
suer001128完成签到 ,获得积分10
4秒前
5秒前
6秒前
秉文完成签到,获得积分10
6秒前
马敏完成签到 ,获得积分10
6秒前
科研通AI5应助陈晚拧采纳,获得10
7秒前
涨水娃发布了新的文献求助10
7秒前
ZHIXIANGWENG发布了新的文献求助10
7秒前
SCI发布了新的文献求助10
7秒前
食野小匡完成签到,获得积分10
7秒前
邱靖贻发布了新的文献求助10
8秒前
nickchenzzz发布了新的文献求助10
8秒前
8秒前
支凤妖完成签到,获得积分10
8秒前
KDS发布了新的文献求助10
9秒前
万能图书馆应助蔺烨磊采纳,获得10
9秒前
陈龙完成签到,获得积分10
9秒前
9秒前
西蓝花香菜完成签到 ,获得积分10
9秒前
活泼孤风发布了新的文献求助10
9秒前
9秒前
victor完成签到,获得积分10
10秒前
Sandwich完成签到,获得积分20
10秒前
SCI完成签到,获得积分10
12秒前
暴躁的夏烟应助Wu采纳,获得10
13秒前
13秒前
fox199753206发布了新的文献求助10
13秒前
蔚蓝发布了新的文献求助10
13秒前
14秒前
nickchenzzz完成签到,获得积分10
15秒前
15秒前
诺奇发布了新的文献求助10
16秒前
快乐科研完成签到,获得积分10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561233
求助须知:如何正确求助?哪些是违规求助? 3134952
关于积分的说明 9410444
捐赠科研通 2835342
什么是DOI,文献DOI怎么找? 1558422
邀请新用户注册赠送积分活动 728199
科研通“疑难数据库(出版商)”最低求助积分说明 716729