亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calculating the similarity between prescriptions to find their new indications based on graph neural network

药方 余弦相似度 雅卡索引 相似性(几何) 中医药 图形 人工智能 计算机科学 医学 人工神经网络 数据挖掘 模式识别(心理学) 替代医学 理论计算机科学 药理学 图像(数学) 病理
作者
Xingxing Han,Xiaoxia Xie,Ranran Zhao,Yu Li,Peilong Ma,Huan Li,Fengming Chen,Chao Song,Zhishu Tang
出处
期刊:Chinese Medicine [Springer Nature]
卷期号:19 (1)
标识
DOI:10.1186/s13020-024-00994-y
摘要

Abstract Background Drug repositioning has the potential to reduce costs and accelerate the rate of drug development, with highly promising applications. Currently, the development of artificial intelligence has provided the field with fast and efficient computing power. Nevertheless, the repositioning of traditional Chinese medicine (TCM) is still in its infancy, and the establishment of a reasonable and effective research method is a pressing issue that requires urgent attention. The use of graph neural network (GNN) to compute the similarity between TCM prescriptions to develop a method for finding their new indications is an innovative attempt. Methods This paper focused on traditional Chinese medicine prescriptions containing ephedra, with 20 prescriptions for treating external cough and asthma taken as target prescriptions. The remaining 67 prescriptions containing ephedra were taken as to-be-matched prescriptions. Furthermore, a multitude of data pertaining to the prescriptions, including diseases, disease targets, symptoms, and various types of information on herbs, was gathered from a diverse array of literature sources, such as Chinese medicine databases. Then, cosine similarity and Jaccard coefficient were calculated to characterize the similarity between prescriptions using graph convolutional network (GCN) with a self-supervised learning method, such as deep graph infomax (DGI). Results A total of 1340 values were obtained for each of the two calculation indicators. A total of 68 prescription pairs were identified after screening with 0.77 as the threshold for cosine similarity. Following the removal of false positive results, 12 prescription pairs were deemed to have further research value. A total of 5 prescription pairs were screened using a threshold of 0.50 for the Jaccard coefficient. However, the specific results did not exhibit significant value for further use, which may be attributed to the excessive variety of information in the dataset. Conclusions The proposed method can provide reference for finding new indications of target prescriptions by quantifying the similarity between prescriptions. It is expected to offer new insights for developing a scientific and systematic research methodology for traditional Chinese medicine repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶茶完成签到,获得积分10
2秒前
28秒前
mingshan1018完成签到,获得积分20
54秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
方方别方应助科研通管家采纳,获得10
58秒前
藤椒辣鱼应助科研通管家采纳,获得10
58秒前
mingshan1018发布了新的文献求助50
1分钟前
1分钟前
1分钟前
daiyu发布了新的文献求助10
2分钟前
上官若男应助daiyu采纳,获得10
2分钟前
2分钟前
研友_VZG7GZ应助爱听歌笑寒采纳,获得10
3分钟前
英姑应助shun采纳,获得30
3分钟前
3分钟前
3分钟前
Joeswith完成签到,获得积分10
4分钟前
4分钟前
4分钟前
淡淡的元霜完成签到,获得积分10
4分钟前
藤椒辣鱼应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
dingbeicn完成签到,获得积分10
5分钟前
诺奖离我十万八千里完成签到,获得积分10
5分钟前
5分钟前
柒月发布了新的文献求助10
5分钟前
柒月完成签到,获得积分10
6分钟前
华仔应助渊思采纳,获得10
6分钟前
6分钟前
渊思发布了新的文献求助10
6分钟前
渊思完成签到,获得积分10
6分钟前
blenx完成签到,获得积分10
7分钟前
7分钟前
yulia完成签到 ,获得积分10
7分钟前
7分钟前
Rw发布了新的文献求助10
7分钟前
shun发布了新的文献求助30
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003702
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691454