化学
吸附
砷酸盐
凝结
砷
水处理
核化学
无机化学
环境工程
有机化学
精神科
工程类
心理学
作者
Yanli Kong,Yahua Zhou,Pengjun Zhang,Yong Nie,Jiangya Ma
标识
DOI:10.1016/j.jhazmat.2024.135819
摘要
Arsenate [As(V)] pollution is a challenge for water treatment, and the effect of coexisting microplastics (MPs) on As(V) removal is still not clear. In this study, series novel covalently bonded organic silicon-aluminum/iron composite coagulants (CSA/F) with different Al/Fe molar ratios were prepared for enhancing As(V) removal. The effect mechanism of MPs (PS MPs and PS-COOH MPs) on As(V) removal by using CSAF coagulation was analyzed. CSAF and CSF showed significantly better As(V) removal performance than other coagulants under the same conditions, especially CSF, more than 90 % As(V) removal was achieved at dosage of 20 mg/L and pH of 4.0-8.0. Interestingly, the introduction of silane coupling agent and the increase of Fe content in CSA/F changed the Al/Fe species distribution. Charge neutralization dominant in As(V) removal by using CSA, whereas adsorption and net sweeping contributed to As(V) coagulation by using CSAF and CSF with higher iron proportion at neutral pH. 3 µm MPs were removed by net sweeping of amorphous Al/Fe hydroxides, while 26 µm MPs were charge-neutralized or surface adsorbed by coagulant hydrolysates. The aliphatic C-H and -COOH functional groups of MPs were the main sites of hydrogen bonding adsorption with the hydroxyl groups of coagulant hydrolysates. This study is conducive to mitigating the environmental toxicity of arsenic and provides new insights into the interaction mechanism between composite pollutants and coagulants in waters.
科研通智能强力驱动
Strongly Powered by AbleSci AI