Surface-enhanced Raman spectroscopy for the characterization of xylanases enzyme

化学 木聚糖 拉曼光谱 木聚糖酶 木糖 基质(水族馆) 水解 酶水解 木二糖 分析化学(期刊) 生物化学 色谱法 发酵 光学 地质学 物理 海洋学
作者
Naeema Kanwal,Nosheen Rashid,Muhammad Irfan Majeed,Haq Nawaz,Arooj Amber,Muhammad Zohaib,Aqsa Bano,Norah A. Albekairi,Abdulrahman Alshammari,Aleena Shahzadi,Sonia Yaseen,Arslan Bashir
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:325: 125065-125065 被引量:4
标识
DOI:10.1016/j.saa.2024.125065
摘要

Xylanases are essential hydrolytic enzymes which break down the plant cell wall polysaccharide, xylan composed of D-xylose monomers. Surface-enhanced Raman Spectroscopy (SERS) was utilized for the characterization of interaction of xylanases with xylan at varying concentrations. The study focuses on the application of SERS for the characterization of enzymatic activity of xylanases causing hydrolysis of Xylan substrate with increase in its concentration which is substrate for this enzyme in the range of 0.2% to 1.0%. SERS differentiating features are identified which can be associated with xylanases treated with different concentrations of xylan. SERS measurements were performed using silver nanoparticles as SERS substrate to amplify Raman signal intensity for the characterization of xylan treated with xylanases. Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) were applied to analyze the spectral data to analyze differentiation between the SERS spectra of different samples. Mean SERS spectra revealed significant differences in spectral features particularly related to carbohydrate skeletal mode and O-C-O and C-C-C ring deformations. PCA scatter plot effectively differentiates data sets, demonstrating SERS ability to distinguish treated xylanases samples and the PC-loadings plot highlights the variables responsible for differentiation. PLS-DA was employed as a quantitative classification model for treated xylanase enzymes with increasing concentrations of xylan. The values of sensitivity, specificity, and accuracy were found to be 0.98%, 0.99%, and 100% respectively. Moreover, the AUC value was found to be 0.9947 which signifies the excellent performance of PLS-DA model. SERS combined with multivariate techniques, effectively characterized and differentiated xylanase samples as a result of interaction with different concentrations of the Xylan substrate. The identified SERS features can help to characterize xylanases treated with various concentrations of xylan with promising applications in the bio-processing and biotechnology industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
urologywang完成签到 ,获得积分10
7秒前
小公牛完成签到 ,获得积分10
8秒前
双手外科结完成签到,获得积分10
12秒前
13秒前
RFlord发布了新的文献求助10
20秒前
李健的小迷弟应助Lumi采纳,获得30
22秒前
29秒前
海英完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
小点完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
Lumi发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
蓝豆子完成签到 ,获得积分10
1分钟前
Superman完成签到 ,获得积分10
1分钟前
alan完成签到 ,获得积分0
1分钟前
jiangjiang完成签到,获得积分10
1分钟前
小山己几完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
leaolf应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
211fjfj完成签到 ,获得积分10
1分钟前
追梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
1分钟前
梦XING完成签到 ,获得积分10
2分钟前
背书强完成签到 ,获得积分10
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
manmanzhong完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128435
求助须知:如何正确求助?哪些是违规求助? 4331130
关于积分的说明 13494178
捐赠科研通 4167056
什么是DOI,文献DOI怎么找? 2284336
邀请新用户注册赠送积分活动 1285334
关于科研通互助平台的介绍 1225882