透视图(图形)
还原(数学)
温室气体
环境经济学
碳纤维
业务
工程类
建筑工程
经济
计算机科学
生态学
几何学
数学
算法
人工智能
复合数
生物
作者
Xianjuan An,Yanjing Yang,Xinyu Zhang,Xueting Zeng
摘要
In the context of the global climate change problem intensifying due to a dramatic increase in carbon emissions, smart cities, as a topical application of digitalization and intelligence, have become a new urban governance mode for countries, which helps to achieve sustainable development. This research studies the relationship between smart city construction (SCC) and carbon dioxide emissions based on the differences-in-differences model (DID) and propensity score matching (PSM) to promote China to achieve dual carbon goals and high-quality development. The findings are as follows: (a) SCC could promote carbon emission reduction by reducing urban carbon dioxide emissions by an average of 11.4%, which also has significant long-term dynamic effects. Specifically, SCC has more obvious emission reduction effects on activities, such as industrial production and waste treatment. (b) Mechanism verification shows that green technology progress is a significant booster for the carbon reduction effect in SCC. The pilot project can increase output of green patents, which helps transfer production mode and consumption patterns in an environmentally friendly manner. SCC could increase the total factor productivity (TFP) through the rational allocation and efficient use of resources, and thus reducing carbon emissions. (c) Research on city heterogeneity shows that a high level of human capital, material, and financial resources can provide support for smart cities to better achieve the carbon reduction effect. Among them, material resources have the best carbon reduction effect in the process of SCC, which could reduce carbon dioxide emissions by about 6.6–17.7%. This study is useful for policymakers to continuously and dynamically adjust urban development strategies in the future, to achieve a balance between socioeconomic prosperity and environmental sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI