已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint extraction of Chinese medical entities and relations based on RoBERTa and single-module global pointer

指针(用户界面) 计算机科学 判决 关系抽取 自然语言处理 解码方法 人工智能 理论计算机科学 数据挖掘 信息抽取 算法
作者
Dongmei Li,Yu Yang,Jinman Cui,Xianghao Meng,Jintao Qu,Zhuobin Jiang,Yufeng Zhao
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02577-1
摘要

Abstract Background Most Chinese joint entity and relation extraction tasks in medicine involve numerous nested entities, overlapping relations, and other challenging extraction issues. In response to these problems, some traditional methods decompose the joint extraction task into multiple steps or multiple modules, resulting in local dependency in the meantime. Methods To alleviate this issue, we propose a joint extraction model of Chinese medical entities and relations based on RoBERTa and single-module global pointer, namely RSGP, which formulates joint extraction as a global pointer linking problem. Considering the uniqueness of Chinese language structure, we introduce the RoBERTa-wwm pre-trained language model at the encoding layer to obtain a better embedding representation. Then, we represent the input sentence as a third-order tensor and score each position in the tensor to prepare for the subsequent process of decoding the triples. In the end, we design a novel single-module global pointer decoding approach to alleviate the generation of redundant information. Specifically, we analyze the decoding process of single character entities individually, improving the time and space performance of RSGP to some extent. Results In order to verify the effectiveness of our model in extracting Chinese medical entities and relations, we carry out the experiments on the public dataset, CMeIE. Experimental results show that RSGP performs significantly better on the joint extraction of Chinese medical entities and relations, and achieves state-of-the-art results compared with baseline models. Conclusion The proposed RSGP can effectively extract entities and relations from Chinese medical texts and help to realize the structure of Chinese medical texts, so as to provide high-quality data support for the construction of Chinese medical knowledge graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liushuyu发布了新的文献求助30
2秒前
2秒前
4秒前
淼淼之锋完成签到 ,获得积分10
5秒前
9秒前
9秒前
乐乐应助油个大饼呜呜呜采纳,获得10
10秒前
DX发布了新的文献求助10
10秒前
13秒前
bxxxxx完成签到,获得积分10
14秒前
15秒前
圆圆完成签到 ,获得积分10
17秒前
18秒前
21秒前
希望天下0贩的0应助阿晨采纳,获得10
21秒前
22秒前
23秒前
24秒前
希望天下0贩的0应助daiyu采纳,获得10
25秒前
lin完成签到 ,获得积分10
26秒前
26秒前
CC完成签到,获得积分10
27秒前
27秒前
星辰大海应助科研进化中采纳,获得10
27秒前
27秒前
Elanie完成签到,获得积分10
28秒前
wxd发布了新的文献求助10
30秒前
勤恳幻然发布了新的文献求助10
31秒前
38秒前
41秒前
41秒前
44秒前
archer01发布了新的文献求助10
44秒前
dd99081发布了新的文献求助200
47秒前
赘婿应助勤恳幻然采纳,获得10
47秒前
纯白333发布了新的文献求助10
48秒前
bkagyin应助archer01采纳,获得10
53秒前
油个大饼呜呜呜完成签到,获得积分20
53秒前
53秒前
九九完成签到,获得积分10
53秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269473
捐赠科研通 2560089
什么是DOI,文献DOI怎么找? 1388851
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798