亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Spatial-Temporal Attention Networks for Functional Connectome Classification

连接体 计算机科学 比例(比率) 人工智能 模式识别(心理学) 功能连接 地图学 神经科学 心理学 地理
作者
Youyong Kong,Xiaotong Zhang,Wenhan Wang,Yue Zhou,Yueying Li,Yonggui Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3448214
摘要

Many neuropsychiatric disorders are considered to be associated with abnormalities in the functional connectivity networks of the brain. The research on the classification of functional connectivity can therefore provide new perspectives for understanding the pathology of disorders and contribute to early diagnosis and treatment. Functional connectivity exhibits a nature of dynamically changing over time, however, the majority of existing methods are unable to collectively reveal the spatial topology and time-varying characteristics. Furthermore, despite the efforts of limited spatial-temporal studies to capture rich information across different spatial scales, they have not delved into the temporal characteristics among different scales. To address above issues, we propose a novel Multi-Scale Spatial-Temporal Attention Networks (MSSTAN) to exploit the multi-scale spatial-temporal information provided by functional connectome for classification. To fully extract spatial features of brain regions, we propose a Topology Enhanced Graph Transformer module to guide the attention calculations in the learning of spatial features by incorporating topology priors. A Multi-Scale Pooling Strategy is introduced to obtain representations of brain connectome at various scales. Considering the temporal dynamic characteristics between dynamic functional connectome, we employ Locality Sensitive Hashing attention to further capture long-term dependencies in time dynamics across multiple scales and reduce the computational complexity of the original attention mechanism. Experiments on three brain fMRI datasets of MDD and ASD demonstrate the superiority of our proposed approach. In addition, benefiting from the attention mechanism in Transformer, our results are interpretable, which can contribute to the discovery of biomarkers. The code is available at https://github.com/LIST-KONG/MSSTAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张可完成签到 ,获得积分10
2秒前
艮爚完成签到 ,获得积分10
30秒前
30秒前
叶思言发布了新的文献求助10
33秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
56秒前
骆十八发布了新的文献求助10
1分钟前
1分钟前
1分钟前
dou发布了新的文献求助30
1分钟前
SciGPT应助间质采纳,获得10
1分钟前
WUWUWU应助Little2采纳,获得10
1分钟前
科研通AI2S应助dou采纳,获得10
1分钟前
英姑应助茜茜采纳,获得10
1分钟前
1分钟前
Little2发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
忧郁的香魔完成签到,获得积分10
2分钟前
2分钟前
茜茜发布了新的文献求助10
2分钟前
2分钟前
无情的匪完成签到 ,获得积分10
2分钟前
2分钟前
ADDDD发布了新的文献求助10
2分钟前
李健应助ADDDD采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
金一完成签到 ,获得积分10
3分钟前
老才完成签到 ,获得积分10
3分钟前
勤劳的小吴完成签到,获得积分10
3分钟前
呱呱乐关注了科研通微信公众号
3分钟前
KSung完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
呱呱乐发布了新的文献求助10
4分钟前
4分钟前
123发布了新的文献求助10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307352
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500142
捐赠科研通 2615329
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410