清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma

胶质母细胞瘤 队列 危险系数 比例危险模型 接收机工作特性 医学 回顾性队列研究 核医学 无进展生存期 磁共振成像 内科学 放射科 总体生存率 癌症研究 置信区间
作者
Louis Gagnon,Diviya Gupta,George Mastorakos,Nathan White,Vanessa Goodwill,Carrie R. McDonald,Thomas Beaumont,Christopher C. Conlin,Tyler M. Seibert,Uyen N. T. Nguyen,Jona A. Hattangadi‐Gluth,Santosh Kesari,Jessica Schulte,David Piccioni,Kathleen M. Schmainda,Nikdokht Farid,Anders M. Dale,Jeffrey D. Rudie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5)
标识
DOI:10.1148/ryai.230489
摘要

. Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans of patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRIs in 1297 patients with glioblastoma, including an internal cohort of 243 MRIs (January 2010-June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists based on imaging, clinical history, and pathology. Multimodal MRI with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in detecting recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± [SD]13; 121 male, 57 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610 and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR:0.53-0.89) and the AUC for detecting residual/recurrent tumor was 0.84 (95% CI:0.79- 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04/mL,
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
14秒前
xun发布了新的文献求助10
25秒前
38秒前
1分钟前
江上游完成签到 ,获得积分10
1分钟前
1分钟前
Rascal发布了新的文献求助10
1分钟前
酷波er应助Rascal采纳,获得10
1分钟前
Krim完成签到 ,获得积分10
1分钟前
蔡从安完成签到,获得积分20
1分钟前
2分钟前
在水一方应助inRe采纳,获得10
2分钟前
2分钟前
四叶草完成签到,获得积分20
2分钟前
莫小烦发布了新的文献求助50
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
xun完成签到,获得积分20
3分钟前
莫小烦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
4分钟前
badgerwithfisher完成签到,获得积分10
4分钟前
NexusExplorer应助畅快的海云采纳,获得10
4分钟前
畅快的海云完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
inRe发布了新的文献求助10
5分钟前
长情半邪发布了新的文献求助20
5分钟前
绿袖子完成签到,获得积分10
5分钟前
5分钟前
gwbk完成签到,获得积分10
5分钟前
科研通AI2S应助长情半邪采纳,获得10
5分钟前
传奇3应助求你了哥采纳,获得10
5分钟前
huangyi完成签到 ,获得积分10
5分钟前
Polymer72应助长情半邪采纳,获得10
5分钟前
6分钟前
飘逸问薇完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339038
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627946
捐赠科研通 2646494
什么是DOI,文献DOI怎么找? 1449239
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176