Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma

胶质母细胞瘤 队列 危险系数 比例危险模型 接收机工作特性 医学 回顾性队列研究 核医学 无进展生存期 磁共振成像 内科学 放射科 总体生存率 癌症研究 置信区间
作者
Louis Gagnon,Diviya Gupta,George Mastorakos,Nathan White,Vanessa Goodwill,Carrie R. McDonald,Thomas Beaumont,Christopher C. Conlin,Tyler M. Seibert,Uyen N. T. Nguyen,Jona A. Hattangadi‐Gluth,Santosh Kesari,Jessica Schulte,David Piccioni,Kathleen M. Schmainda,Nikdokht Farid,Anders M. Dale,Jeffrey D. Rudie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5)
标识
DOI:10.1148/ryai.230489
摘要

. Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans of patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRIs in 1297 patients with glioblastoma, including an internal cohort of 243 MRIs (January 2010-June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists based on imaging, clinical history, and pathology. Multimodal MRI with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in detecting recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± [SD]13; 121 male, 57 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610 and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR:0.53-0.89) and the AUC for detecting residual/recurrent tumor was 0.84 (95% CI:0.79- 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04/mL,
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王海丽完成签到,获得积分20
1秒前
善学以致用应助往返采纳,获得10
3秒前
ding应助liujinjin采纳,获得10
3秒前
hxl发布了新的文献求助10
3秒前
oo发布了新的文献求助10
4秒前
不忘初心发布了新的文献求助200
6秒前
HJJHJH发布了新的文献求助50
7秒前
7秒前
8秒前
pp完成签到,获得积分20
8秒前
小蘑菇应助云行采纳,获得10
10秒前
奋斗的元珊完成签到,获得积分10
10秒前
11秒前
王番发布了新的文献求助10
11秒前
12秒前
过时的笙完成签到,获得积分10
13秒前
13秒前
康桥完成签到,获得积分10
14秒前
liujinjin发布了新的文献求助10
14秒前
嘟嘟发布了新的文献求助20
15秒前
往返发布了新的文献求助10
15秒前
金滢发布了新的文献求助10
15秒前
Hello应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
Liu应助科研通管家采纳,获得10
17秒前
Liu应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
马马发布了新的文献求助10
18秒前
pp发布了新的文献求助10
18秒前
19秒前
华仔应助maolao采纳,获得10
20秒前
顾矜应助马马采纳,获得10
22秒前
Akim应助时尚的飞机采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182