Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma

胶质母细胞瘤 队列 危险系数 比例危险模型 接收机工作特性 医学 回顾性队列研究 核医学 无进展生存期 磁共振成像 内科学 放射科 总体生存率 癌症研究 置信区间
作者
Louis Gagnon,Diviya Gupta,George Mastorakos,Nathan White,Vanessa Goodwill,Carrie R. McDonald,Thomas Beaumont,Christopher C. Conlin,Tyler M. Seibert,Uyen N. T. Nguyen,Jona A. Hattangadi‐Gluth,Santosh Kesari,Jessica Schulte,David Piccioni,Kathleen M. Schmainda,Nikdokht Farid,Anders M. Dale,Jeffrey D. Rudie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5)
标识
DOI:10.1148/ryai.230489
摘要

. Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans of patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRIs in 1297 patients with glioblastoma, including an internal cohort of 243 MRIs (January 2010-June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists based on imaging, clinical history, and pathology. Multimodal MRI with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in detecting recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± [SD]13; 121 male, 57 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610 and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR:0.53-0.89) and the AUC for detecting residual/recurrent tumor was 0.84 (95% CI:0.79- 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04/mL,
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alpha发布了新的文献求助10
1秒前
刘鹏宇发布了新的文献求助10
2秒前
zhangscience完成签到,获得积分10
2秒前
可爱的函函应助若狂采纳,获得10
3秒前
小蘑菇应助阿美采纳,获得30
3秒前
科研通AI2S应助机智小虾米采纳,获得10
4秒前
充电宝应助Xx.采纳,获得10
5秒前
zhangscience发布了新的文献求助10
6秒前
深情安青应助大方嵩采纳,获得10
7秒前
英俊的铭应助大方嵩采纳,获得10
7秒前
李还好完成签到,获得积分10
8秒前
满意的柏柳完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
buno应助88采纳,获得10
11秒前
12秒前
三千世界完成签到,获得积分10
12秒前
12秒前
愉快的访旋完成签到,获得积分10
13秒前
Alpha完成签到,获得积分10
14秒前
大大发布了新的文献求助30
14秒前
翠翠发布了新的文献求助10
15秒前
半山发布了新的文献求助10
16秒前
16秒前
天天快乐应助CO2采纳,获得10
16秒前
隐形曼青应助junzilan采纳,获得10
17秒前
Dksido发布了新的文献求助10
17秒前
18秒前
思源应助卓哥采纳,获得10
18秒前
mysci完成签到,获得积分10
21秒前
22秒前
Quzhengkai发布了新的文献求助10
23秒前
23秒前
24秒前
落寞晓灵完成签到,获得积分10
24秒前
ORAzzz应助翠翠采纳,获得20
25秒前
zoe完成签到,获得积分10
25秒前
习习应助学术小白采纳,获得10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808