Abstract Solar‐driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe 3 O 4 ), poly( N ‐isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe 3 O 4 nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar‐energy water purification by phase transition behavior in soft robotics.