亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Facility Location Problem: Modeling Joint Disruptions Using Subordination

接头(建筑物) 设施选址问题 计算机科学 从属关系(语言学) 运输工程 运筹学 工程类 运营管理 土木工程 哲学 语言学
作者
Vishwakant Malladi,Kumar Muthuraman
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1016-1032
标识
DOI:10.1287/trsc.2023.0103
摘要

We study the facility location problem with disruptions where the objective is to choose a set of locations that minimizes the sum of expected servicing and setup costs. Disruptions can affect multiple locations simultaneously and are caused by multiple factors like geography, supply chain characteristics, politics, and ownership. Accounting for the various factors when modeling disruptions is challenging due to a large number of required parameters, the lack of calibration methodologies, the sparsity of disruption data, and the number of scenarios to be considered in the optimization. Because of these reasons, existing models neglect dependence or prespecify the dependence structures. Using partially subordinated Markov chains, we present a comprehensive approach that starts from disruption data, models dependencies, calibrates the disruption model, and optimizes location choices. We construct a metric and a calibration algorithm that learns from the data the strength of dependence, the number of necessary factors (subordinators), and the locations each subordinator affects. We prove that our calibration approach yields consistent estimates of the model parameters. Then, we introduce a variant of the standard approach to the underlying optimization problem, which leverages partially subordinated Markov chains to solve it quickly and precisely. Finally, we demonstrate the efficacy of our approach using twelve different disruption data sets. Our calibrated parameters are robust, and our optimization algorithm performs better than the simulation-based algorithm. The solutions from our model for disruptions have lower costs than those from other disruption models. Our approach allows for better modeling of disruptions from historical data and can be adapted to other problems in logistics, like the hub location, capacitated facility location, and so on., with joint disruptions. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0103 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助ryf采纳,获得10
4秒前
TT完成签到 ,获得积分10
8秒前
ryf完成签到,获得积分10
15秒前
42秒前
cc发布了新的文献求助10
46秒前
58秒前
香蕉觅云应助聂紫寒采纳,获得10
1分钟前
1分钟前
聂紫寒发布了新的文献求助10
1分钟前
月桂桂发布了新的文献求助10
1分钟前
orange完成签到 ,获得积分10
1分钟前
聂紫寒完成签到,获得积分10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
周杰完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
田様应助cc采纳,获得10
1分钟前
2分钟前
2分钟前
pandary完成签到,获得积分10
2分钟前
yue发布了新的文献求助10
2分钟前
2分钟前
Nichols完成签到,获得积分10
2分钟前
Zx_1993应助whoknowsname采纳,获得10
2分钟前
whoknowsname完成签到,获得积分10
2分钟前
酷波er应助yue采纳,获得10
2分钟前
xuxu125678完成签到 ,获得积分10
2分钟前
兴奋的菠萝完成签到,获得积分10
2分钟前
gkads举报孙慧敏求助涉嫌违规
2分钟前
2分钟前
tang完成签到,获得积分10
2分钟前
tang发布了新的文献求助10
2分钟前
miooo完成签到,获得积分20
3分钟前
3分钟前
miooo发布了新的文献求助20
3分钟前
jama117关注了科研通微信公众号
3分钟前
努力努力再努力完成签到,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323855
求助须知:如何正确求助?哪些是违规求助? 4464982
关于积分的说明 13893929
捐赠科研通 4356611
什么是DOI,文献DOI怎么找? 2392945
邀请新用户注册赠送积分活动 1386490
关于科研通互助平台的介绍 1356620