亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on green supply chain finance risk identification based on two-stage deep learning

鉴定(生物学) 供应链 阶段(地层学) 供应链风险管理 业务 风险分析(工程) 财务 供应链管理 营销 服务管理 地质学 生物 古生物学 植物
作者
Ying Liu,LI Si-zhe,Chunmei Yu,Mingli Lv
出处
期刊:Operations Research Perspectives [Elsevier]
卷期号:13: 100311-100311 被引量:1
标识
DOI:10.1016/j.orp.2024.100311
摘要

As a resonance product between financial services and the upgrading of the green industry, green supply chain finance has garnered extensive attention in the process of ecological civilization construction. Effectively promoting the green transformation of small and medium-sized enterprises and achieving the "dual carbon" goals necessitate the avoidance of corporate green risks. However, the complex interdependence and information asymmetry among green supply chain finance enterprises result in data characteristics such as multi-source small samples and high-dimensional imbalance. To address these issues, this paper proposes a risk assessment model based on two-stage deep learning. In the first stage, we employ Generative Adversarial Network (GAN) to generate minority class default samples, and utilize Stacked Auto-Encoder (SAE) to extract data features with closed-form parameter calculation capability. In the second stage, the obtained features are input into a Deep Neural Network (DNN), and parameter learning and model optimization are conducted through joint training. Finally, to model low-order feature interactions, we integrate the Support Vector Machine (SVM) algorithm. The paper is grounded in the green innovation production of enterprises, collecting financial data of 176 upstream and downstream enterprises and corresponding core enterprise green indicators from 2013 to 2022. Experimental results demonstrate that GAN oversampling technique not only enhances the model's AUC metric but also significantly improves the F1 score. Compared with traditional deep learning methods, the proposed two-stage deep integration model effectively reduces training loss and exhibits superiority in identifying green supply chain finance risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
25秒前
28秒前
Chris完成签到 ,获得积分0
32秒前
星启完成签到 ,获得积分10
32秒前
01完成签到 ,获得积分10
35秒前
小橘子吃傻子完成签到,获得积分10
40秒前
40秒前
42秒前
lucky发布了新的文献求助10
45秒前
45秒前
山山完成签到,获得积分20
47秒前
山山发布了新的文献求助10
51秒前
59秒前
苏苏发布了新的文献求助10
1分钟前
激情的代曼完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
爆米花应助小智采纳,获得10
1分钟前
1分钟前
浮游应助激情的代曼采纳,获得10
1分钟前
aaron完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小龙完成签到,获得积分10
1分钟前
斯文败类应助科研猫头鹰采纳,获得10
1分钟前
小智发布了新的文献求助10
1分钟前
nxy完成签到 ,获得积分10
1分钟前
Owen应助EaRnn采纳,获得10
1分钟前
玫瑰遇上奶油完成签到 ,获得积分10
1分钟前
赵雨欣完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小巧尔曼完成签到,获得积分10
1分钟前
1分钟前
EaRnn发布了新的文献求助10
2分钟前
chenzheng发布了新的文献求助10
2分钟前
可爱的函函应助Karma采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578