已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on green supply chain finance risk identification based on two-stage deep learning

鉴定(生物学) 供应链 阶段(地层学) 供应链风险管理 业务 风险分析(工程) 财务 供应链管理 营销 服务管理 地质学 生物 古生物学 植物
作者
Ying Liu,LI Si-zhe,Chunmei Yu,Mingli Lv
出处
期刊:Operations Research Perspectives [Elsevier]
卷期号:13: 100311-100311 被引量:1
标识
DOI:10.1016/j.orp.2024.100311
摘要

As a resonance product between financial services and the upgrading of the green industry, green supply chain finance has garnered extensive attention in the process of ecological civilization construction. Effectively promoting the green transformation of small and medium-sized enterprises and achieving the "dual carbon" goals necessitate the avoidance of corporate green risks. However, the complex interdependence and information asymmetry among green supply chain finance enterprises result in data characteristics such as multi-source small samples and high-dimensional imbalance. To address these issues, this paper proposes a risk assessment model based on two-stage deep learning. In the first stage, we employ Generative Adversarial Network (GAN) to generate minority class default samples, and utilize Stacked Auto-Encoder (SAE) to extract data features with closed-form parameter calculation capability. In the second stage, the obtained features are input into a Deep Neural Network (DNN), and parameter learning and model optimization are conducted through joint training. Finally, to model low-order feature interactions, we integrate the Support Vector Machine (SVM) algorithm. The paper is grounded in the green innovation production of enterprises, collecting financial data of 176 upstream and downstream enterprises and corresponding core enterprise green indicators from 2013 to 2022. Experimental results demonstrate that GAN oversampling technique not only enhances the model's AUC metric but also significantly improves the F1 score. Compared with traditional deep learning methods, the proposed two-stage deep integration model effectively reduces training loss and exhibits superiority in identifying green supply chain finance risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤汤完成签到 ,获得积分10
1秒前
3秒前
good发布了新的文献求助10
3秒前
天凉王破完成签到 ,获得积分10
5秒前
小债完成签到 ,获得积分10
6秒前
池haojie发布了新的文献求助10
9秒前
DrCuiTianjin完成签到 ,获得积分0
9秒前
云汐完成签到,获得积分10
11秒前
12秒前
zzzy完成签到 ,获得积分10
12秒前
pK完成签到 ,获得积分10
12秒前
鱼羊明完成签到 ,获得积分10
13秒前
sopha发布了新的文献求助10
16秒前
21秒前
yiyao完成签到 ,获得积分10
22秒前
无花果应助bobo1129采纳,获得10
22秒前
顾矜应助拼搏的白玉采纳,获得10
25秒前
王艳完成签到 ,获得积分10
26秒前
ding应助chen采纳,获得20
26秒前
30秒前
李付清完成签到 ,获得积分10
33秒前
34秒前
背后的若之完成签到 ,获得积分10
36秒前
36秒前
Orange应助闪闪的熠彤采纳,获得10
36秒前
yb716发布了新的文献求助10
36秒前
37秒前
LY0430完成签到 ,获得积分10
41秒前
震千筹完成签到,获得积分10
42秒前
43秒前
疯院士完成签到,获得积分10
43秒前
无辜的惜寒完成签到 ,获得积分10
45秒前
谭文完成签到 ,获得积分10
46秒前
47秒前
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
仓鼠球完成签到,获得积分10
49秒前
49秒前
51秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432027
求助须知:如何正确求助?哪些是违规求助? 4544781
关于积分的说明 14194087
捐赠科研通 4464004
什么是DOI,文献DOI怎么找? 2446934
邀请新用户注册赠送积分活动 1438258
关于科研通互助平台的介绍 1415046