Research on green supply chain finance risk identification based on two-stage deep learning

鉴定(生物学) 供应链 阶段(地层学) 供应链风险管理 业务 风险分析(工程) 财务 供应链管理 营销 服务管理 地质学 生物 古生物学 植物
作者
Ying Liu,LI Si-zhe,Chunmei Yu,Mingli Lv
出处
期刊:Operations Research Perspectives [Elsevier BV]
卷期号:13: 100311-100311 被引量:1
标识
DOI:10.1016/j.orp.2024.100311
摘要

As a resonance product between financial services and the upgrading of the green industry, green supply chain finance has garnered extensive attention in the process of ecological civilization construction. Effectively promoting the green transformation of small and medium-sized enterprises and achieving the "dual carbon" goals necessitate the avoidance of corporate green risks. However, the complex interdependence and information asymmetry among green supply chain finance enterprises result in data characteristics such as multi-source small samples and high-dimensional imbalance. To address these issues, this paper proposes a risk assessment model based on two-stage deep learning. In the first stage, we employ Generative Adversarial Network (GAN) to generate minority class default samples, and utilize Stacked Auto-Encoder (SAE) to extract data features with closed-form parameter calculation capability. In the second stage, the obtained features are input into a Deep Neural Network (DNN), and parameter learning and model optimization are conducted through joint training. Finally, to model low-order feature interactions, we integrate the Support Vector Machine (SVM) algorithm. The paper is grounded in the green innovation production of enterprises, collecting financial data of 176 upstream and downstream enterprises and corresponding core enterprise green indicators from 2013 to 2022. Experimental results demonstrate that GAN oversampling technique not only enhances the model's AUC metric but also significantly improves the F1 score. Compared with traditional deep learning methods, the proposed two-stage deep integration model effectively reduces training loss and exhibits superiority in identifying green supply chain finance risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水水加油完成签到 ,获得积分10
刚刚
waubycid完成签到,获得积分10
1秒前
魏云康完成签到,获得积分10
2秒前
2秒前
小余同学发布了新的文献求助10
2秒前
ly发布了新的文献求助10
7秒前
Ya发布了新的文献求助10
8秒前
9秒前
研友_VZG7GZ应助11采纳,获得10
9秒前
丹丹完成签到 ,获得积分10
10秒前
魏云康发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
xwyai完成签到,获得积分10
17秒前
xol完成签到 ,获得积分10
17秒前
仰望星空发布了新的文献求助10
17秒前
18秒前
ding应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
Ali完成签到,获得积分10
20秒前
lyc8211完成签到,获得积分10
21秒前
朱朱子完成签到,获得积分10
22秒前
在水一方应助Bosen采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548