Research on green supply chain finance risk identification based on two-stage deep learning

鉴定(生物学) 供应链 阶段(地层学) 供应链风险管理 业务 风险分析(工程) 财务 供应链管理 营销 服务管理 地质学 生物 古生物学 植物
作者
Ying Liu,LI Si-zhe,Chunmei Yu,Mingli Lv
出处
期刊:Operations Research Perspectives [Elsevier BV]
卷期号:13: 100311-100311 被引量:1
标识
DOI:10.1016/j.orp.2024.100311
摘要

As a resonance product between financial services and the upgrading of the green industry, green supply chain finance has garnered extensive attention in the process of ecological civilization construction. Effectively promoting the green transformation of small and medium-sized enterprises and achieving the "dual carbon" goals necessitate the avoidance of corporate green risks. However, the complex interdependence and information asymmetry among green supply chain finance enterprises result in data characteristics such as multi-source small samples and high-dimensional imbalance. To address these issues, this paper proposes a risk assessment model based on two-stage deep learning. In the first stage, we employ Generative Adversarial Network (GAN) to generate minority class default samples, and utilize Stacked Auto-Encoder (SAE) to extract data features with closed-form parameter calculation capability. In the second stage, the obtained features are input into a Deep Neural Network (DNN), and parameter learning and model optimization are conducted through joint training. Finally, to model low-order feature interactions, we integrate the Support Vector Machine (SVM) algorithm. The paper is grounded in the green innovation production of enterprises, collecting financial data of 176 upstream and downstream enterprises and corresponding core enterprise green indicators from 2013 to 2022. Experimental results demonstrate that GAN oversampling technique not only enhances the model's AUC metric but also significantly improves the F1 score. Compared with traditional deep learning methods, the proposed two-stage deep integration model effectively reduces training loss and exhibits superiority in identifying green supply chain finance risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助kangkang采纳,获得10
刚刚
暖暖发布了新的文献求助10
刚刚
刚刚
1秒前
wanci应助敏感的凝天采纳,获得10
1秒前
万能图书馆应助明理大树采纳,获得10
1秒前
ru发布了新的文献求助20
2秒前
dcx发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
一颗菠菜完成签到,获得积分10
4秒前
5秒前
简单完成签到,获得积分10
6秒前
帅气凝云发布了新的文献求助10
7秒前
tico完成签到,获得积分10
7秒前
Akim应助BINGBING1230采纳,获得30
7秒前
丽娘发布了新的文献求助10
8秒前
8秒前
111发布了新的文献求助10
8秒前
9秒前
9秒前
留胡子的之槐完成签到,获得积分10
9秒前
浮游应助K2L采纳,获得10
9秒前
10秒前
10秒前
sogoucoco完成签到,获得积分10
11秒前
我是老大应助帅气凝云采纳,获得10
12秒前
妖九笙发布了新的文献求助10
13秒前
鸣风发布了新的文献求助10
13秒前
所所应助哈哈哈哈采纳,获得10
13秒前
13秒前
赘婿应助鳄鱼采纳,获得10
14秒前
16秒前
16秒前
wanci应助吴荣方采纳,获得10
17秒前
党文英发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981