Research on green supply chain finance risk identification based on two-stage deep learning

鉴定(生物学) 供应链 阶段(地层学) 供应链风险管理 业务 风险分析(工程) 财务 供应链管理 营销 服务管理 地质学 生物 古生物学 植物
作者
Ying Liu,LI Si-zhe,Chunmei Yu,Mingli Lv
出处
期刊:Operations Research Perspectives [Elsevier BV]
卷期号:13: 100311-100311 被引量:1
标识
DOI:10.1016/j.orp.2024.100311
摘要

As a resonance product between financial services and the upgrading of the green industry, green supply chain finance has garnered extensive attention in the process of ecological civilization construction. Effectively promoting the green transformation of small and medium-sized enterprises and achieving the "dual carbon" goals necessitate the avoidance of corporate green risks. However, the complex interdependence and information asymmetry among green supply chain finance enterprises result in data characteristics such as multi-source small samples and high-dimensional imbalance. To address these issues, this paper proposes a risk assessment model based on two-stage deep learning. In the first stage, we employ Generative Adversarial Network (GAN) to generate minority class default samples, and utilize Stacked Auto-Encoder (SAE) to extract data features with closed-form parameter calculation capability. In the second stage, the obtained features are input into a Deep Neural Network (DNN), and parameter learning and model optimization are conducted through joint training. Finally, to model low-order feature interactions, we integrate the Support Vector Machine (SVM) algorithm. The paper is grounded in the green innovation production of enterprises, collecting financial data of 176 upstream and downstream enterprises and corresponding core enterprise green indicators from 2013 to 2022. Experimental results demonstrate that GAN oversampling technique not only enhances the model's AUC metric but also significantly improves the F1 score. Compared with traditional deep learning methods, the proposed two-stage deep integration model effectively reduces training loss and exhibits superiority in identifying green supply chain finance risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
像棉花糖的云完成签到 ,获得积分10
刚刚
Weiweiweixiao完成签到,获得积分10
刚刚
Arsenc完成签到,获得积分20
1秒前
wsf完成签到,获得积分20
1秒前
思源应助典雅问寒采纳,获得10
1秒前
2秒前
饱满凡灵完成签到,获得积分10
3秒前
3秒前
酷波er应助hhllhh采纳,获得10
4秒前
SophiaMX发布了新的文献求助10
4秒前
慕青应助ashley采纳,获得10
6秒前
大模型应助陈七采纳,获得10
6秒前
orixero应助珝潏采纳,获得10
6秒前
852应助肥波采纳,获得10
7秒前
Wang发布了新的文献求助10
7秒前
阿拉丁完成签到,获得积分10
8秒前
852应助xiaowei666采纳,获得30
8秒前
Akim应助李昕123采纳,获得10
8秒前
研友_VZG7GZ应助外向铃铛采纳,获得10
10秒前
爆米花应助xinlinwang采纳,获得10
10秒前
11秒前
12秒前
13秒前
14秒前
15秒前
15秒前
阿拉丁发布了新的文献求助10
16秒前
16秒前
浮游应助一只酸牛牛采纳,获得10
16秒前
17秒前
SiqiZhang发布了新的文献求助10
18秒前
one发布了新的文献求助10
18秒前
喵喵子发布了新的文献求助10
19秒前
丘比特应助cjf采纳,获得10
19秒前
19秒前
19秒前
x夏天发布了新的文献求助10
19秒前
周肆完成签到,获得积分10
19秒前
hhllhh发布了新的文献求助10
19秒前
典雅问寒发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541