Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach

脑-机接口 运动表象 计算机科学 人工智能 分类器(UML) 卷积神经网络 脑电图 深度学习 稳健性(进化) 模式识别(心理学) 机器学习 语音识别 心理学 生物化学 化学 精神科 基因
作者
Ahmed G. Habashi,Ahmed M. Azab,Seif Eldawlatly,Gamal M. Aly
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046032-046032
标识
DOI:10.1088/1741-2552/ad6598
摘要

Abstract Objective. Motor imagery (MI) represents one major paradigm of Brain–computer interfaces (BCIs) in which users rely on their electroencephalogram (EEG) signals to control the movement of objects. However, due to the inter-subject variability, MI BCIs require recording subject-dependent data to train machine learning classifiers that are used to identify the intended motor action. This represents a challenge in developing MI BCIs as it complicates its calibration and hinders the wide adoption of such a technology. Approach. This study focuses on enhancing cross-subject (CS) MI EEG classification using EEG spectrum images. The proposed calibration-free approach employs deep learning techniques for MI classification and Wasserstein Generative Adversarial Networks (WGAN) for data augmentation. The proposed WGAN generates synthetic spectrum images from the recorded MI-EEG to expand the training dataset; aiming to enhance the classifier’s performance. The proposed approach eliminates the need for any calibration data from the target subject, making it more suitable for real-world applications. Main results. To assess the robustness and efficacy of the proposed framework, we utilized the BCI competition IV-2B, IV-2 A, and IV-1 benchmark datasets, employing leave one-subject out validation. Our results demonstrate that using the proposed modified VGG-CNN classifier in addition to WGAN-generated data for augmentation leads to an enhancement in CS accuracy outperforming state-of-the-art methods. Significance. This approach could represent one step forward towards developing calibration-free BCI systems and hence broaden their applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大萝贝发布了新的文献求助10
2秒前
SYLH应助溶脂采纳,获得10
3秒前
青青科研发布了新的文献求助10
3秒前
haishixigua完成签到,获得积分10
3秒前
啊七完成签到,获得积分10
3秒前
nan完成签到,获得积分10
4秒前
林夕发布了新的文献求助10
4秒前
pcwang完成签到,获得积分10
5秒前
DAI完成签到,获得积分10
5秒前
tiddler完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
SYLH应助DAI采纳,获得10
10秒前
柯嘉宇发布了新的文献求助10
11秒前
11秒前
hyb完成签到,获得积分20
14秒前
Eric完成签到 ,获得积分10
14秒前
15秒前
Akim应助兴奋千兰采纳,获得10
15秒前
九九发布了新的文献求助10
15秒前
香蕉觅云应助眼睛大花生采纳,获得30
16秒前
hyb发布了新的文献求助10
17秒前
hnxxangel发布了新的文献求助10
17秒前
18秒前
dyh关闭了dyh文献求助
19秒前
研友_VZG7GZ应助霸气的梦露采纳,获得10
19秒前
20秒前
20秒前
李院发布了新的文献求助10
20秒前
22秒前
跳跃凡桃完成签到 ,获得积分10
22秒前
满意访冬完成签到,获得积分10
22秒前
cchx完成签到,获得积分10
22秒前
苽峰发布了新的文献求助10
23秒前
lbbb完成签到,获得积分10
24秒前
momo完成签到 ,获得积分10
25秒前
GJH发布了新的文献求助10
27秒前
ccc发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542931
求助须知:如何正确求助?哪些是违规求助? 3120348
关于积分的说明 9342270
捐赠科研通 2818338
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722168
科研通“疑难数据库(出版商)”最低求助积分说明 712992