理论(学习稳定性)
数学
上下界
分布(数学)
稳定性判据
随机微分方程
时滞微分方程
应用数学
微分方程
控制理论(社会学)
差速器(机械装置)
数学分析
计算机科学
统计
物理
控制(管理)
机器学习
人工智能
离散时间和连续时间
热力学
作者
Can Lv,Surong You,Liangjian Hu,Xuerong Mao
标识
DOI:10.1016/j.jfranklin.2024.107169
摘要
A new sufficient condition for stability in distribution of a hybrid stochastic delay differential equation (SDDE) has been proposed. In the new criterion leading to stability for an SDDE, its main component only depends on the coefficients of a corresponding SDE without delay. The Lyapunov method is applied to find an upper bound, so that the SDDE is stable in distribution if the delay is less than the upper bound. Also, the criterion shows that delay terms can be impetuses toward the stability in distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI