Local fusion generative adversarial network with dual-discriminator and parallel multipath and its application in machinery fault diagnosis with imbalanced data

鉴别器 对偶(语法数字) 多径传播 计算机科学 对抗制 断层(地质) 生成对抗网络 融合 生成语法 传感器融合 人工智能 模式识别(心理学) 算法 电信 深度学习 地质学 艺术 频道(广播) 语言学 哲学 文学类 探测器 地震学
作者
Miao Ju,Chuancang Ding,Weiguo Huang,Zhongkui Zhu,Changqing Shen,Juanjuan Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116135-116135
标识
DOI:10.1088/1361-6501/ad6e12
摘要

Abstract Diagnosing faults in critical machinery components is imperative for effective condition monitoring and real-world datasets often suffer from data imbalance. To address this issue, numerous data generation methods have been developed, such as improved local fusion generative adversarial network (ILoFGAN), variational autoencoding GAN (VAEGAN), etc. However, the existing data generation methods primarily concentrate on global and single-scale features and often ignore local or multi-scale features, which leads to the omission of key features or nuances in the generated data. Therefore, a novel approach called the local fusion generative adversarial network with dual-discriminator and parallel multipath (LoFGAN-DP) is designed to enhance the fault diagnosis performance in the context of imbalanced data. The LoFGAN-DP features a parallel multi-path (PMP) module along with a dual-discriminator scheme, in which the multipath module facilitates feature extraction at various scales through convolution across paths of diverse sizes, and the dual-discriminator scheme can better improve the quality and diversity of the samples generated by the generator. The PMP module and dual-discriminator scheme enhance the proposed method’s robustness against variations in input data. After generating data by LoFGAN-DP, a two-dimensional capsule network is further used to achieve the efficient recognition of fault features. To validate the proposed LoFGAN-DP in the machinery fault diagnosis with imbalanced data, the gear dataset and the self-constructed bearing dataset were utilized. Experimental results show that LoFGAN-DP significantly improves structural similarity index, Fréchet inception distance, and fault classification accuracy compared to several advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香菜张完成签到,获得积分10
2秒前
3秒前
香蕉凌蝶完成签到,获得积分10
3秒前
星星又累发布了新的文献求助10
3秒前
叶子宁完成签到,获得积分10
3秒前
tian发布了新的文献求助10
4秒前
可靠半青完成签到 ,获得积分10
4秒前
zzzzzdz完成签到,获得积分10
4秒前
5秒前
情怀应助ludwig采纳,获得10
5秒前
bkagyin应助shinble采纳,获得10
6秒前
碧蓝亦玉完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
Linly发布了新的文献求助10
10秒前
丘比特应助nadeem采纳,获得10
11秒前
a超完成签到 ,获得积分10
13秒前
科研通AI6应助董烁烨采纳,获得10
14秒前
子铭完成签到,获得积分10
15秒前
无花果应助zzb采纳,获得10
15秒前
赘婿应助shinble采纳,获得10
16秒前
16秒前
shunlimaomi完成签到 ,获得积分10
17秒前
阳光he完成签到,获得积分10
18秒前
Ava应助辛勤的囧采纳,获得10
18秒前
19秒前
20秒前
nadeem发布了新的文献求助10
20秒前
科研通AI6应助沉默清采纳,获得10
22秒前
ludwig发布了新的文献求助10
22秒前
小青椒应助一一采纳,获得30
23秒前
尹妮妮发布了新的文献求助10
23秒前
华仔应助柠檬柠檬采纳,获得10
23秒前
ooo完成签到 ,获得积分10
24秒前
24秒前
阿纯完成签到,获得积分10
24秒前
ZH完成签到,获得积分10
25秒前
25秒前
无花果应助julia采纳,获得10
26秒前
jiang完成签到,获得积分10
27秒前
zzb完成签到,获得积分10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225862
求助须知:如何正确求助?哪些是违规求助? 4397534
关于积分的说明 13686584
捐赠科研通 4261996
什么是DOI,文献DOI怎么找? 2338881
邀请新用户注册赠送积分活动 1336284
关于科研通互助平台的介绍 1292213