Local fusion generative adversarial network with dual-discriminator and parallel multipath and its application in machinery fault diagnosis with imbalanced data

鉴别器 对偶(语法数字) 多径传播 计算机科学 对抗制 断层(地质) 生成对抗网络 融合 生成语法 传感器融合 人工智能 模式识别(心理学) 算法 电信 深度学习 地质学 频道(广播) 哲学 艺术 文学类 地震学 探测器 语言学
作者
Miao Ju,Chuancang Ding,Weiguo Huang,Zhongkui Zhu,Changqing Shen,Juanjuan Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116135-116135
标识
DOI:10.1088/1361-6501/ad6e12
摘要

Abstract Diagnosing faults in critical machinery components is imperative for effective condition monitoring and real-world datasets often suffer from data imbalance. To address this issue, numerous data generation methods have been developed, such as improved local fusion generative adversarial network (ILoFGAN), variational autoencoding GAN (VAEGAN), etc. However, the existing data generation methods primarily concentrate on global and single-scale features and often ignore local or multi-scale features, which leads to the omission of key features or nuances in the generated data. Therefore, a novel approach called the local fusion generative adversarial network with dual-discriminator and parallel multipath (LoFGAN-DP) is designed to enhance the fault diagnosis performance in the context of imbalanced data. The LoFGAN-DP features a parallel multi-path (PMP) module along with a dual-discriminator scheme, in which the multipath module facilitates feature extraction at various scales through convolution across paths of diverse sizes, and the dual-discriminator scheme can better improve the quality and diversity of the samples generated by the generator. The PMP module and dual-discriminator scheme enhance the proposed method’s robustness against variations in input data. After generating data by LoFGAN-DP, a two-dimensional capsule network is further used to achieve the efficient recognition of fault features. To validate the proposed LoFGAN-DP in the machinery fault diagnosis with imbalanced data, the gear dataset and the self-constructed bearing dataset were utilized. Experimental results show that LoFGAN-DP significantly improves structural similarity index, Fréchet inception distance, and fault classification accuracy compared to several advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小肖发布了新的文献求助20
3秒前
zcj完成签到,获得积分10
4秒前
4秒前
healer完成签到,获得积分10
5秒前
3AM完成签到,获得积分10
5秒前
6秒前
学术射手完成签到,获得积分10
6秒前
6秒前
7秒前
竹筏过海应助一逗采纳,获得30
10秒前
11秒前
爆米花应助suntee采纳,获得10
12秒前
InfoNinja应助suntee采纳,获得30
12秒前
天天快乐应助suntee采纳,获得10
12秒前
烟花应助AAAAAAAAAAA采纳,获得10
14秒前
lehha完成签到,获得积分10
15秒前
怡然沅完成签到,获得积分10
17秒前
静俏完成签到,获得积分20
17秒前
Steplan完成签到 ,获得积分10
18秒前
20秒前
小蘑菇应助慕冰蝶采纳,获得10
20秒前
22秒前
23秒前
hihi完成签到,获得积分10
24秒前
季生发布了新的文献求助10
25秒前
1inouo发布了新的文献求助10
27秒前
imshao发布了新的文献求助10
28秒前
minifox完成签到,获得积分10
29秒前
所所应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
Rencal完成签到 ,获得积分10
29秒前
传奇3应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
orixero应助小琪猪采纳,获得10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765