Automatic Optimization of Volterra Equalizer With Deep Reinforcement Learning for Intensity-Modulated Direct-Detection Optical Communications

计算机科学 水准点(测量) 均衡(音频) 计算复杂性理论 强化学习 带宽(计算) 自适应均衡器 非线性系统 算法 计算机工程 控制理论(社会学) 电子工程 人工智能 电信 解码方法 工程类 量子力学 物理 大地测量学 地理 控制(管理)
作者
Yongxin Xu,Luyao Huang,Wenqing Jiang,Lei Xue,Weisheng Hu,Lilin Yi
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (16): 5395-5406 被引量:9
标识
DOI:10.1109/jlt.2022.3177446
摘要

Volterra nonlinear equalizer (VNLE) is widely investigated for linear and nonlinear distortions compensation in optical communication systems. Despite the powerful equalization ability, the required high computation complexity limits its real-time implementation on the hardware. To simplify the complexity, the structure of the VNLE needs to be well optimized. Traditionally, manual optimization of the VNLE structure is blind, and traversal search is inefficient and may result in multiple structures. Therefore, the optimal VNLE structure with the best equalization performance and the lowest equalization complexity for the same performance are still unclear. In this paper, a novel search method named AutoVolterra is proposed to efficiently find the optimal structure of VNLE by using deep reinforcement learning to learn the functional relationship between structure parameters and optimization objectives. Experimental demonstration of 50-Gb/s PAM-4 signal transmission in a bandwidth-limited intensity modulation and direct detection system is performed to verify the effectiveness of AutoVolterra. Both AutoVolterra and greedy search are applied to Volterra feedforward equalizer, Volterra decision feedback equalizer and Volterra-Pruning. The bit error ratio and equalizer's complexity results suggest that the structure searched by AutoVolterra can optimize the equalization performance, and also significantly reduce the complexity, and improve the pruning quality of VNLE to assist real-time implementation on the hardware. Besides, AutoVolterra can also provide a reliable equalization performance benchmark and complexity benchmark to help us verify the actual capabilities of other algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
方方发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
高赛文发布了新的文献求助10
5秒前
5秒前
lmm完成签到 ,获得积分10
5秒前
6秒前
在水一方应助cheng采纳,获得10
7秒前
stanfordlee发布了新的文献求助10
8秒前
FashionBoy应助温柔白玉采纳,获得10
9秒前
9秒前
一一一应助YueYue采纳,获得10
9秒前
邓佳鑫Alan应助YueYue采纳,获得10
9秒前
cy完成签到,获得积分10
9秒前
动人的易烟完成签到,获得积分20
10秒前
科研通AI6应助雪白绿旋采纳,获得10
10秒前
昵称发布了新的文献求助10
11秒前
wxt发布了新的文献求助10
11秒前
英吉利25发布了新的文献求助30
13秒前
鱼雷完成签到,获得积分10
14秒前
xjtuwang0618完成签到,获得积分10
16秒前
16秒前
17秒前
蓓蓓完成签到,获得积分10
18秒前
科研通AI6应助多情的忆之采纳,获得30
19秒前
Akim应助LaTeXer采纳,获得50
20秒前
阿黄完成签到,获得积分10
20秒前
20秒前
琳io发布了新的文献求助10
20秒前
方方完成签到,获得积分10
22秒前
Tong123发布了新的文献求助10
22秒前
唐唯一发布了新的文献求助10
22秒前
23秒前
24秒前
大模型应助方方采纳,获得10
25秒前
yao发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989