Automatic Optimization of Volterra Equalizer With Deep Reinforcement Learning for Intensity-Modulated Direct-Detection Optical Communications

计算机科学 水准点(测量) 均衡(音频) 计算复杂性理论 强化学习 带宽(计算) 自适应均衡器 非线性系统 算法 计算机工程 控制理论(社会学) 电子工程 人工智能 电信 解码方法 工程类 量子力学 物理 大地测量学 地理 控制(管理)
作者
Yongxin Xu,Luyao Huang,Wenqing Jiang,Lei Xue,Weisheng Hu,Lilin Yi
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (16): 5395-5406 被引量:9
标识
DOI:10.1109/jlt.2022.3177446
摘要

Volterra nonlinear equalizer (VNLE) is widely investigated for linear and nonlinear distortions compensation in optical communication systems. Despite the powerful equalization ability, the required high computation complexity limits its real-time implementation on the hardware. To simplify the complexity, the structure of the VNLE needs to be well optimized. Traditionally, manual optimization of the VNLE structure is blind, and traversal search is inefficient and may result in multiple structures. Therefore, the optimal VNLE structure with the best equalization performance and the lowest equalization complexity for the same performance are still unclear. In this paper, a novel search method named AutoVolterra is proposed to efficiently find the optimal structure of VNLE by using deep reinforcement learning to learn the functional relationship between structure parameters and optimization objectives. Experimental demonstration of 50-Gb/s PAM-4 signal transmission in a bandwidth-limited intensity modulation and direct detection system is performed to verify the effectiveness of AutoVolterra. Both AutoVolterra and greedy search are applied to Volterra feedforward equalizer, Volterra decision feedback equalizer and Volterra-Pruning. The bit error ratio and equalizer's complexity results suggest that the structure searched by AutoVolterra can optimize the equalization performance, and also significantly reduce the complexity, and improve the pruning quality of VNLE to assist real-time implementation on the hardware. Besides, AutoVolterra can also provide a reliable equalization performance benchmark and complexity benchmark to help us verify the actual capabilities of other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
2秒前
4秒前
奥特超曼应助科研老兵采纳,获得10
4秒前
5秒前
wdy111应助clyhg采纳,获得20
5秒前
kingwill举报ZZZ求助涉嫌违规
7秒前
司空靖琪完成签到,获得积分10
7秒前
Imp发布了新的文献求助10
8秒前
gogoyoco发布了新的文献求助10
9秒前
Owen应助懵懂的幻桃采纳,获得10
9秒前
9秒前
orixero应助祖国小红花采纳,获得10
9秒前
英姑应助ssss采纳,获得10
12秒前
Ava应助tracer采纳,获得10
13秒前
13秒前
扶摇完成签到 ,获得积分10
14秒前
伊森发布了新的文献求助10
15秒前
北北完成签到,获得积分10
15秒前
16秒前
桃源theshy发布了新的文献求助10
18秒前
kingwill举报求助违规成功
19秒前
wdy111举报求助违规成功
19秒前
Zel博博举报求助违规成功
19秒前
19秒前
20秒前
乂贰ZERO叁发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176