已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LiSiam: Localization Invariance Siamese Network for Deepfake Detection

计算机科学 人工智能 判别式 稳健性(进化) 分割 模式识别(心理学) 特征提取 网络体系结构 计算机视觉 计算机安全 生物化学 基因 化学
作者
Jian Wang,Yunlian Sun,Jinhui Tang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 2425-2436 被引量:10
标识
DOI:10.1109/tifs.2022.3186803
摘要

Advances in facial manipulation technology have led to increasing indistinguishable and realistic face swap videos, which raises growing concerns about the security risk of deepfakes in the community. Although current deepfake detectors can gain promising performance when handling high-quality faces under within-database settings, most detectors suffer from performance degradation in cross-database evaluation. Moreover, when test faces’ quality is different from training faces, the performance degrades even under within-database settings. To this end, we propose a novel Localization invariance Siamese Network (LiSiam) to enforce localization invariance against different image degradation for deepfake detection. Specifically, our Siamese network-based feature extractor takes the original image and the corresponding quality-degraded image as pairwise inputs and outputs two segmentation maps. A localization invariance loss is further proposed to impose localization consistency between the two segmentation maps. In addition, we design a Mask-guided Transformer to capture the co-occurrence between the forgery region and its surroundings. Finally, a multi-task learning strategy is utilized to obtain a robust and discriminative feature representation and jointly optimize multiple objective functions (i.e., segmentation, classification, and localization invariance losses) in an end-to-end manner. Experimental results on two public datasets, i.e., FaceForensics++ and Celeb-DF, demonstrate the superior performance of our proposed method to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆清完成签到,获得积分20
刚刚
2秒前
3秒前
5秒前
5秒前
小叮当发布了新的文献求助10
8秒前
Aurora发布了新的文献求助10
8秒前
9秒前
uranus完成签到,获得积分10
10秒前
ZJ发布了新的文献求助10
12秒前
似水流年完成签到 ,获得积分10
12秒前
14秒前
ZJ完成签到,获得积分10
17秒前
张杠杠完成签到 ,获得积分10
17秒前
小沈最美完成签到,获得积分10
17秒前
duanhuiyuan应助Diane01采纳,获得10
18秒前
雪白砖家完成签到 ,获得积分10
18秒前
yuuu完成签到 ,获得积分10
20秒前
20秒前
bigtreeee发布了新的文献求助10
20秒前
21秒前
孤独的莫言完成签到,获得积分20
23秒前
27秒前
里里完成签到,获得积分10
28秒前
浩然完成签到,获得积分10
30秒前
31秒前
31秒前
隐形曼青应助王大锤采纳,获得10
31秒前
大帅比完成签到 ,获得积分10
32秒前
32秒前
33秒前
511完成签到 ,获得积分10
35秒前
胡图图发布了新的文献求助10
36秒前
37秒前
Lucas应助WANG.采纳,获得10
37秒前
Doraemon完成签到 ,获得积分10
38秒前
39秒前
41秒前
coffe逗完成签到,获得积分20
41秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455549
求助须知:如何正确求助?哪些是违规求助? 3050804
关于积分的说明 9022645
捐赠科研通 2739346
什么是DOI,文献DOI怎么找? 1502665
科研通“疑难数据库(出版商)”最低求助积分说明 694565
邀请新用户注册赠送积分活动 693376