LiSiam: Localization Invariance Siamese Network for Deepfake Detection

计算机科学 人工智能 判别式 稳健性(进化) 分割 模式识别(心理学) 特征提取 网络体系结构 计算机视觉 计算机安全 生物化学 基因 化学
作者
Jian Wang,Yunlian Sun,Jinhui Tang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 2425-2436 被引量:10
标识
DOI:10.1109/tifs.2022.3186803
摘要

Advances in facial manipulation technology have led to increasing indistinguishable and realistic face swap videos, which raises growing concerns about the security risk of deepfakes in the community. Although current deepfake detectors can gain promising performance when handling high-quality faces under within-database settings, most detectors suffer from performance degradation in cross-database evaluation. Moreover, when test faces’ quality is different from training faces, the performance degrades even under within-database settings. To this end, we propose a novel Localization invariance Siamese Network (LiSiam) to enforce localization invariance against different image degradation for deepfake detection. Specifically, our Siamese network-based feature extractor takes the original image and the corresponding quality-degraded image as pairwise inputs and outputs two segmentation maps. A localization invariance loss is further proposed to impose localization consistency between the two segmentation maps. In addition, we design a Mask-guided Transformer to capture the co-occurrence between the forgery region and its surroundings. Finally, a multi-task learning strategy is utilized to obtain a robust and discriminative feature representation and jointly optimize multiple objective functions (i.e., segmentation, classification, and localization invariance losses) in an end-to-end manner. Experimental results on two public datasets, i.e., FaceForensics++ and Celeb-DF, demonstrate the superior performance of our proposed method to state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奥利奥发布了新的文献求助10
1秒前
传奇3应助memcad采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
3秒前
核桃应助伯爵采纳,获得10
3秒前
Khan发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
镜缘完成签到,获得积分10
4秒前
5秒前
大胆擎苍发布了新的文献求助10
5秒前
机灵水卉发布了新的文献求助10
5秒前
6秒前
CC完成签到 ,获得积分10
6秒前
7秒前
8秒前
JamesPei应助Charison采纳,获得10
8秒前
9秒前
打打应助科研小举人采纳,获得10
9秒前
9秒前
9秒前
FashionBoy应助坦率的寻双采纳,获得10
10秒前
酷炫绿草完成签到,获得积分10
11秒前
菲比完成签到 ,获得积分10
11秒前
12秒前
12秒前
顺子完成签到 ,获得积分10
13秒前
温柔樱桃完成签到 ,获得积分10
13秒前
13秒前
13秒前
清爽指甲油完成签到,获得积分10
13秒前
MeiLing发布了新的文献求助10
15秒前
我是老大应助kimiwanano采纳,获得10
15秒前
15秒前
zzuzll发布了新的文献求助10
15秒前
幽默海燕完成签到,获得积分10
15秒前
Criminology34应助刘liu采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736010
求助须知:如何正确求助?哪些是违规求助? 5363574
关于积分的说明 15331883
捐赠科研通 4880027
什么是DOI,文献DOI怎么找? 2622477
邀请新用户注册赠送积分活动 1571485
关于科研通互助平台的介绍 1528316