Distributed Acoustic Sensing Vertical Seismic Profile Data Denoising Based on Multistage Denoising Network

降噪 检波器 噪音(视频) 计算机科学 残余物 噪声测量 信号(编程语言) 信噪比(成像) 人工智能 地质学 地震学 电信 算法 图像(数学) 程序设计语言
作者
Yue Li,Man Zhang,Yuxing Zhao,Ning Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:10
标识
DOI:10.1109/tgrs.2022.3194635
摘要

Distributed acoustic sensing (DAS) is a new exploration technology widely used to acquire vertical seismic profiles (VSPs). DAS can achieve low-cost and high-density observations, but the signal-to-noise ratio (SNR) of the VSP data collected by DAS is low compared with traditional electrical geophones. Moreover, DAS VSP data cover many types of noise, including random noise, fading noise, checkerboard noise, and long-period noise. These noises bring many difficulties to the imaging and interpretation of DAS VSP data. To solve this problem, we proposed a multi-stage denoising network (MSDN) to denoise DAS VSP data. MSDN is a progressive denoising network consisting of four stages. MSDN can recover the signal details better than a single-stage denoising network, which is beneficial when processing deep reflection signals. In addition, MSDN combines residual structure and an attention mechanism. The residual structure can prevent the degradation of the deep neural network, while the attention mechanism can make the network focus on effective signals, making network learning more accurate and efficient. Both synthetic data and field data denoising results showed that MSDN could effectively remove various complex noises and restore signals covered by noise. Compared with other denoising methods, our method has improved signal amplitude preservation ability and noise suppression ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Genmii完成签到,获得积分10
刚刚
chem完成签到,获得积分10
1秒前
1秒前
1秒前
慕青应助Woaimama724采纳,获得10
2秒前
6秒前
小四月发布了新的文献求助10
6秒前
7秒前
zk完成签到 ,获得积分10
9秒前
10秒前
xingmeng发布了新的文献求助10
12秒前
12秒前
13秒前
月白发布了新的文献求助10
13秒前
李健的粉丝团团长应助xhn采纳,获得30
14秒前
Woaimama724发布了新的文献求助10
16秒前
orixero应助shen_ting采纳,获得10
16秒前
19秒前
似非发布了新的文献求助20
19秒前
慕青应助三叶草采纳,获得10
19秒前
19秒前
20秒前
阿曼尼完成签到 ,获得积分10
21秒前
8R60d8应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
Orange应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
生椰拿铁发布了新的文献求助10
24秒前
整齐的豆芽完成签到,获得积分10
24秒前
Marita发布了新的文献求助10
25秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352160
求助须知:如何正确求助?哪些是违规求助? 2977423
关于积分的说明 8679402
捐赠科研通 2658429
什么是DOI,文献DOI怎么找? 1455764
科研通“疑难数据库(出版商)”最低求助积分说明 674090
邀请新用户注册赠送积分活动 664631