Distracted driving detection based on the fusion of deep learning and causal reasoning

计算机科学 稳健性(进化) 人工智能 卷积神经网络 注意力网络 深度学习 反事实思维 机器学习 模式识别(心理学) 心理学 社会心理学 生物化学 化学 基因
作者
Peng Ping,Cong Huang,Weiping Ding,Yongkang Liu,Miyajima Chiyomi,Kazuya Takeda
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 121-142 被引量:35
标识
DOI:10.1016/j.inffus.2022.08.009
摘要

Distracted driving is one of the key factors that cause drivers to ignore potential road hazards and then lead to accidents. Existing efforts in distracted behavior recognition are mainly based on deep learning (DL) methods, which identifies distracted behaviors by analyzing static characteristics of images. However, the convolutional neural network (CNN) — based DL methods lack the causal reasoning ability for behavior patterns. The uncertainty of driving behaviors, noise of the collected data, and occlusion between body agents, bring additional challenges to existing DL methods to recognize distracted behaviors continuously and accurately. Therefore, in this paper, we propose a distracted behavior recognition method based on the Temporal–Spatial double-line DL network (TSD-DLN) and causal And-or graph (C-AOG). TSD-DLN fuses the attention feature extracted from the dynamic optical flow information and the spatial feature of the single video frame to recognize the distracted driving posture. Furthermore, a causal knowledge fence based on C-AOG is fused with TSD-DLN to improve the recognition robustness. The C-AOG represents the causality of behavior state fluent change and adopts counterfactual reasoning to suppress behavior recognition failures caused by frame features distortion or occlusion between body agents. We compared the performance of the proposed method with other state-of-the-art (SOTA) DL methods on two public datasets and self-collected dataset. Experimental results demonstrate that proposed method significantly outperforms other SOTA methods when acquiring distracted driving behavior by processing consecutive frames. In addition, the proposed method exhibits accurate continuous recognition and robustness under incomplete observation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
欣喜谷槐完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
小白鼠完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI6应助Fortune采纳,获得10
2秒前
DrLee发布了新的文献求助10
3秒前
搞怪半烟完成签到,获得积分10
3秒前
害怕的惜文完成签到,获得积分10
3秒前
wlnhyF完成签到,获得积分10
3秒前
4秒前
mhpvv完成签到,获得积分10
4秒前
4秒前
东新发布了新的文献求助10
4秒前
王帅发布了新的文献求助10
4秒前
SciGPT应助YZQ采纳,获得10
5秒前
5秒前
6秒前
HOla完成签到,获得积分10
6秒前
小马甲应助邓茗予采纳,获得10
7秒前
科研通AI6应助月星采纳,获得10
7秒前
张瑜发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
张晓祁发布了新的文献求助100
10秒前
调皮的灰狼完成签到,获得积分10
11秒前
11秒前
12秒前
液氧发布了新的文献求助10
12秒前
NANA完成签到,获得积分10
13秒前
小青椒应助happy采纳,获得50
13秒前
13秒前
加贺完成签到,获得积分10
14秒前
禹宛白发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802