亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distracted driving detection based on the fusion of deep learning and causal reasoning

计算机科学 稳健性(进化) 人工智能 卷积神经网络 注意力网络 深度学习 反事实思维 机器学习 模式识别(心理学) 心理学 社会心理学 生物化学 化学 基因
作者
Peng Ping,Cong Huang,Weiping Ding,Yongkang Liu,Miyajima Chiyomi,Kazuya Takeda
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 121-142 被引量:35
标识
DOI:10.1016/j.inffus.2022.08.009
摘要

Distracted driving is one of the key factors that cause drivers to ignore potential road hazards and then lead to accidents. Existing efforts in distracted behavior recognition are mainly based on deep learning (DL) methods, which identifies distracted behaviors by analyzing static characteristics of images. However, the convolutional neural network (CNN) — based DL methods lack the causal reasoning ability for behavior patterns. The uncertainty of driving behaviors, noise of the collected data, and occlusion between body agents, bring additional challenges to existing DL methods to recognize distracted behaviors continuously and accurately. Therefore, in this paper, we propose a distracted behavior recognition method based on the Temporal–Spatial double-line DL network (TSD-DLN) and causal And-or graph (C-AOG). TSD-DLN fuses the attention feature extracted from the dynamic optical flow information and the spatial feature of the single video frame to recognize the distracted driving posture. Furthermore, a causal knowledge fence based on C-AOG is fused with TSD-DLN to improve the recognition robustness. The C-AOG represents the causality of behavior state fluent change and adopts counterfactual reasoning to suppress behavior recognition failures caused by frame features distortion or occlusion between body agents. We compared the performance of the proposed method with other state-of-the-art (SOTA) DL methods on two public datasets and self-collected dataset. Experimental results demonstrate that proposed method significantly outperforms other SOTA methods when acquiring distracted driving behavior by processing consecutive frames. In addition, the proposed method exhibits accurate continuous recognition and robustness under incomplete observation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮然完成签到,获得积分10
1秒前
直率的笑翠完成签到 ,获得积分10
20秒前
Epiphany完成签到,获得积分10
50秒前
Pattis完成签到 ,获得积分10
53秒前
ZXneuro完成签到,获得积分10
56秒前
upcomingbias完成签到,获得积分10
58秒前
高贵的铅笔完成签到,获得积分10
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助材料生采纳,获得10
2分钟前
3分钟前
Thi发布了新的文献求助10
3分钟前
xinghui完成签到,获得积分10
3分钟前
路漫漫其修远兮完成签到 ,获得积分10
3分钟前
3分钟前
材料生发布了新的文献求助10
4分钟前
香蕉觅云应助Ee采纳,获得10
4分钟前
喷火球完成签到,获得积分10
4分钟前
标致金毛发布了新的文献求助10
4分钟前
123456完成签到,获得积分10
4分钟前
喷火球发布了新的文献求助10
5分钟前
瑞水南郡完成签到,获得积分10
5分钟前
FashionBoy应助rose采纳,获得10
5分钟前
5分钟前
rose发布了新的文献求助10
5分钟前
5分钟前
Ee发布了新的文献求助10
5分钟前
5分钟前
JamesPei应助陈杰采纳,获得10
5分钟前
6分钟前
Suc发布了新的文献求助10
6分钟前
赘婿应助材料生采纳,获得10
6分钟前
香蕉觅云应助芳芳酱采纳,获得10
6分钟前
Suc关闭了Suc文献求助
6分钟前
拾英发布了新的文献求助10
6分钟前
6分钟前
芳芳酱发布了新的文献求助10
6分钟前
ding应助Hayat采纳,获得20
6分钟前
Owen应助拾英采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568207
求助须知:如何正确求助?哪些是违规求助? 4652651
关于积分的说明 14701915
捐赠科研通 4594523
什么是DOI,文献DOI怎么找? 2521025
邀请新用户注册赠送积分活动 1492879
关于科研通互助平台的介绍 1463696