亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distracted driving detection based on the fusion of deep learning and causal reasoning

计算机科学 稳健性(进化) 人工智能 卷积神经网络 注意力网络 深度学习 反事实思维 机器学习 模式识别(心理学) 心理学 社会心理学 生物化学 化学 基因
作者
Peng Ping,Cong Huang,Weiping Ding,Yongkang Liu,Miyajima Chiyomi,Kazuya Takeda
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 121-142 被引量:35
标识
DOI:10.1016/j.inffus.2022.08.009
摘要

Distracted driving is one of the key factors that cause drivers to ignore potential road hazards and then lead to accidents. Existing efforts in distracted behavior recognition are mainly based on deep learning (DL) methods, which identifies distracted behaviors by analyzing static characteristics of images. However, the convolutional neural network (CNN) — based DL methods lack the causal reasoning ability for behavior patterns. The uncertainty of driving behaviors, noise of the collected data, and occlusion between body agents, bring additional challenges to existing DL methods to recognize distracted behaviors continuously and accurately. Therefore, in this paper, we propose a distracted behavior recognition method based on the Temporal–Spatial double-line DL network (TSD-DLN) and causal And-or graph (C-AOG). TSD-DLN fuses the attention feature extracted from the dynamic optical flow information and the spatial feature of the single video frame to recognize the distracted driving posture. Furthermore, a causal knowledge fence based on C-AOG is fused with TSD-DLN to improve the recognition robustness. The C-AOG represents the causality of behavior state fluent change and adopts counterfactual reasoning to suppress behavior recognition failures caused by frame features distortion or occlusion between body agents. We compared the performance of the proposed method with other state-of-the-art (SOTA) DL methods on two public datasets and self-collected dataset. Experimental results demonstrate that proposed method significantly outperforms other SOTA methods when acquiring distracted driving behavior by processing consecutive frames. In addition, the proposed method exhibits accurate continuous recognition and robustness under incomplete observation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵毛豆完成签到 ,获得积分10
2秒前
PYF完成签到,获得积分10
35秒前
pjy完成签到 ,获得积分10
48秒前
BowieHuang应助科研通管家采纳,获得10
52秒前
BowieHuang应助科研通管家采纳,获得10
53秒前
BowieHuang应助科研通管家采纳,获得10
53秒前
天天快乐应助科研通管家采纳,获得10
53秒前
1分钟前
1分钟前
研友_VZG7GZ应助帅气的如豹采纳,获得10
2分钟前
火星仙人掌完成签到 ,获得积分10
2分钟前
2分钟前
眯眯眼的诗桃完成签到 ,获得积分20
2分钟前
眯眯眼的诗桃关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
无花果应助谭代涛采纳,获得10
2分钟前
2分钟前
谭代涛发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
Rin发布了新的文献求助10
3分钟前
Rin完成签到,获得积分20
3分钟前
Alisha完成签到,获得积分10
4分钟前
英姑应助小不点采纳,获得10
4分钟前
斯文的苡完成签到,获得积分10
4分钟前
4分钟前
小不点发布了新的文献求助10
4分钟前
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
zwd发布了新的文献求助30
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Jasper应助黄如晨采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685530
关于积分的说明 14838588
捐赠科研通 4671137
什么是DOI,文献DOI怎么找? 2538247
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470924