Distracted driving detection based on the fusion of deep learning and causal reasoning

计算机科学 稳健性(进化) 人工智能 卷积神经网络 注意力网络 深度学习 反事实思维 机器学习 模式识别(心理学) 心理学 社会心理学 生物化学 化学 基因
作者
Peng Ping,Cong Huang,Weiping Ding,Yongkang Liu,Miyajima Chiyomi,Kazuya Takeda
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 121-142 被引量:35
标识
DOI:10.1016/j.inffus.2022.08.009
摘要

Distracted driving is one of the key factors that cause drivers to ignore potential road hazards and then lead to accidents. Existing efforts in distracted behavior recognition are mainly based on deep learning (DL) methods, which identifies distracted behaviors by analyzing static characteristics of images. However, the convolutional neural network (CNN) — based DL methods lack the causal reasoning ability for behavior patterns. The uncertainty of driving behaviors, noise of the collected data, and occlusion between body agents, bring additional challenges to existing DL methods to recognize distracted behaviors continuously and accurately. Therefore, in this paper, we propose a distracted behavior recognition method based on the Temporal–Spatial double-line DL network (TSD-DLN) and causal And-or graph (C-AOG). TSD-DLN fuses the attention feature extracted from the dynamic optical flow information and the spatial feature of the single video frame to recognize the distracted driving posture. Furthermore, a causal knowledge fence based on C-AOG is fused with TSD-DLN to improve the recognition robustness. The C-AOG represents the causality of behavior state fluent change and adopts counterfactual reasoning to suppress behavior recognition failures caused by frame features distortion or occlusion between body agents. We compared the performance of the proposed method with other state-of-the-art (SOTA) DL methods on two public datasets and self-collected dataset. Experimental results demonstrate that proposed method significantly outperforms other SOTA methods when acquiring distracted driving behavior by processing consecutive frames. In addition, the proposed method exhibits accurate continuous recognition and robustness under incomplete observation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔雀翎发布了新的文献求助10
1秒前
开放青旋应助Eternity采纳,获得20
1秒前
candy发布了新的文献求助10
1秒前
ccnn完成签到 ,获得积分10
1秒前
小马甲应助满意曼寒采纳,获得10
1秒前
1秒前
zz完成签到,获得积分10
1秒前
酸酸完成签到 ,获得积分20
1秒前
可爱的函函应助宸殇翊采纳,获得10
2秒前
科研通AI6应助,,采纳,获得10
2秒前
CodeCraft应助余真谛采纳,获得10
2秒前
2秒前
young完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
jetwang给jetwang的求助进行了留言
3秒前
3秒前
难过板栗发布了新的文献求助10
3秒前
斯文败类应助shuofeng采纳,获得10
4秒前
高高的夜梅完成签到,获得积分20
5秒前
Vivian_Zhang应助zzz采纳,获得10
5秒前
橘子味完成签到,获得积分10
5秒前
aniu发布了新的文献求助10
5秒前
Rainnnn完成签到,获得积分20
5秒前
5秒前
why完成签到,获得积分10
6秒前
顾北完成签到,获得积分10
6秒前
斑布发布了新的文献求助10
6秒前
科研通AI6应助新嘟采纳,获得10
6秒前
LL77完成签到 ,获得积分10
6秒前
6秒前
lijia3发布了新的文献求助10
7秒前
彭于晏应助高高的冰绿采纳,获得10
7秒前
完美世界应助Simms采纳,获得10
7秒前
英姑应助Sitroul采纳,获得10
7秒前
7秒前
健忘芷发布了新的文献求助20
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401