Distracted driving detection based on the fusion of deep learning and causal reasoning

计算机科学 稳健性(进化) 人工智能 卷积神经网络 注意力网络 深度学习 反事实思维 机器学习 模式识别(心理学) 心理学 生物化学 社会心理学 基因 化学
作者
Peng Ping,Cong Huang,Weiping Ding,Yongkang Liu,Miyajima Chiyomi,Kazuya Takeda
出处
期刊:Information Fusion [Elsevier BV]
卷期号:89: 121-142 被引量:35
标识
DOI:10.1016/j.inffus.2022.08.009
摘要

Distracted driving is one of the key factors that cause drivers to ignore potential road hazards and then lead to accidents. Existing efforts in distracted behavior recognition are mainly based on deep learning (DL) methods, which identifies distracted behaviors by analyzing static characteristics of images. However, the convolutional neural network (CNN) — based DL methods lack the causal reasoning ability for behavior patterns. The uncertainty of driving behaviors, noise of the collected data, and occlusion between body agents, bring additional challenges to existing DL methods to recognize distracted behaviors continuously and accurately. Therefore, in this paper, we propose a distracted behavior recognition method based on the Temporal–Spatial double-line DL network (TSD-DLN) and causal And-or graph (C-AOG). TSD-DLN fuses the attention feature extracted from the dynamic optical flow information and the spatial feature of the single video frame to recognize the distracted driving posture. Furthermore, a causal knowledge fence based on C-AOG is fused with TSD-DLN to improve the recognition robustness. The C-AOG represents the causality of behavior state fluent change and adopts counterfactual reasoning to suppress behavior recognition failures caused by frame features distortion or occlusion between body agents. We compared the performance of the proposed method with other state-of-the-art (SOTA) DL methods on two public datasets and self-collected dataset. Experimental results demonstrate that proposed method significantly outperforms other SOTA methods when acquiring distracted driving behavior by processing consecutive frames. In addition, the proposed method exhibits accurate continuous recognition and robustness under incomplete observation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Juvenilesy完成签到,获得积分10
刚刚
hanggg完成签到,获得积分10
刚刚
田様应助hexinxin采纳,获得10
刚刚
田田完成签到,获得积分10
刚刚
无花果应助请你加倍努力采纳,获得10
刚刚
nzxnzx发布了新的文献求助10
刚刚
岳凯完成签到 ,获得积分10
1秒前
欢呼凡英完成签到,获得积分10
1秒前
1秒前
Leeu发布了新的文献求助30
2秒前
黎明发布了新的文献求助10
2秒前
GGbond发布了新的文献求助10
2秒前
gjm发布了新的文献求助10
2秒前
爆米花应助灵巧一笑采纳,获得10
2秒前
wanci应助科研通管家采纳,获得30
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
猪猪hero发布了新的文献求助10
3秒前
万能图书馆应助虾米采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
Friday完成签到,获得积分20
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
田田发布了新的文献求助10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
916应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得30
4秒前
4秒前
SYLH应助科研通管家采纳,获得20
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
916应助科研通管家采纳,获得10
4秒前
916应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650