Distracted driving detection based on the fusion of deep learning and causal reasoning

计算机科学 稳健性(进化) 人工智能 卷积神经网络 注意力网络 深度学习 反事实思维 机器学习 模式识别(心理学) 心理学 生物化学 社会心理学 基因 化学
作者
Peng Ping,Cong Huang,Weiping Ding,Yongkang Liu,Miyajima Chiyomi,Kazuya Takeda
出处
期刊:Information Fusion [Elsevier]
卷期号:89: 121-142 被引量:35
标识
DOI:10.1016/j.inffus.2022.08.009
摘要

Distracted driving is one of the key factors that cause drivers to ignore potential road hazards and then lead to accidents. Existing efforts in distracted behavior recognition are mainly based on deep learning (DL) methods, which identifies distracted behaviors by analyzing static characteristics of images. However, the convolutional neural network (CNN) — based DL methods lack the causal reasoning ability for behavior patterns. The uncertainty of driving behaviors, noise of the collected data, and occlusion between body agents, bring additional challenges to existing DL methods to recognize distracted behaviors continuously and accurately. Therefore, in this paper, we propose a distracted behavior recognition method based on the Temporal–Spatial double-line DL network (TSD-DLN) and causal And-or graph (C-AOG). TSD-DLN fuses the attention feature extracted from the dynamic optical flow information and the spatial feature of the single video frame to recognize the distracted driving posture. Furthermore, a causal knowledge fence based on C-AOG is fused with TSD-DLN to improve the recognition robustness. The C-AOG represents the causality of behavior state fluent change and adopts counterfactual reasoning to suppress behavior recognition failures caused by frame features distortion or occlusion between body agents. We compared the performance of the proposed method with other state-of-the-art (SOTA) DL methods on two public datasets and self-collected dataset. Experimental results demonstrate that proposed method significantly outperforms other SOTA methods when acquiring distracted driving behavior by processing consecutive frames. In addition, the proposed method exhibits accurate continuous recognition and robustness under incomplete observation scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小妮完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
jelifo完成签到,获得积分10
7秒前
听话的鸟发布了新的文献求助10
8秒前
9秒前
Capital完成签到,获得积分10
12秒前
小药童完成签到,获得积分0
13秒前
coasting完成签到,获得积分10
13秒前
鲤鱼灵阳完成签到,获得积分10
14秒前
18秒前
嘎嘣脆完成签到 ,获得积分10
18秒前
llll完成签到 ,获得积分0
20秒前
shejiawei发布了新的文献求助10
22秒前
mzrrong完成签到 ,获得积分10
24秒前
bellaluna完成签到 ,获得积分10
24秒前
Linson完成签到,获得积分10
26秒前
gulin完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
nqterysc完成签到,获得积分10
28秒前
研友_VZGVzn完成签到,获得积分10
30秒前
shejiawei完成签到,获得积分10
33秒前
zouni完成签到,获得积分10
34秒前
沉醉的中国钵完成签到 ,获得积分10
34秒前
001完成签到 ,获得积分10
35秒前
da49完成签到,获得积分10
37秒前
Astra完成签到,获得积分10
38秒前
活力的香芦完成签到,获得积分10
42秒前
Loey完成签到,获得积分10
42秒前
某只橘猫君完成签到,获得积分10
42秒前
邓大瓜完成签到,获得积分10
43秒前
44秒前
科研摆渡人完成签到,获得积分10
45秒前
犹豫的雨柏完成签到,获得积分10
46秒前
Tbin完成签到,获得积分10
46秒前
HopeLee完成签到,获得积分10
46秒前
Asumita完成签到,获得积分10
47秒前
DOUBLE完成签到,获得积分10
47秒前
齐阳春完成签到 ,获得积分10
48秒前
ybcy完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645089
求助须知:如何正确求助?哪些是违规求助? 4767716
关于积分的说明 15026372
捐赠科研通 4803503
什么是DOI,文献DOI怎么找? 2568340
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301