Computer-aided anatomy recognition in intrathoracic and -abdominal surgery: a systematic review

人工智能 计算机科学 医学 医学物理学 推论 机器学习
作者
R. B. den Boer,C. de Jongh,W. T. E. Huijbers,Tim J. M. Jaspers,Josien P. W. Pluim,Richard van Hillegersberg,Maureen van Eijnatten,Jelle P. Ruurda
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Nature]
卷期号:36 (12): 8737-8752 被引量:15
标识
DOI:10.1007/s00464-022-09421-5
摘要

Abstract Background Minimally invasive surgery is complex and associated with substantial learning curves. Computer-aided anatomy recognition, such as artificial intelligence-based algorithms, may improve anatomical orientation, prevent tissue injury, and improve learning curves. The study objective was to provide a comprehensive overview of current literature on the accuracy of anatomy recognition algorithms in intrathoracic and -abdominal surgery. Methods This systematic review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Pubmed, Embase, and IEEE Xplore were searched for original studies up until January 2022 on computer-aided anatomy recognition, without requiring intraoperative imaging or calibration equipment. Extracted features included surgical procedure, study population and design, algorithm type, pre-training methods, pre- and post-processing methods, data augmentation, anatomy annotation, training data, testing data, model validation strategy, goal of the algorithm, target anatomical structure, accuracy, and inference time. Results After full-text screening, 23 out of 7124 articles were included. Included studies showed a wide diversity, with six possible recognition tasks in 15 different surgical procedures, and 14 different accuracy measures used. Risk of bias in the included studies was high, especially regarding patient selection and annotation of the reference standard. Dice and intersection over union (IoU) scores of the algorithms ranged from 0.50 to 0.98 and from 74 to 98%, respectively, for various anatomy recognition tasks. High-accuracy algorithms were typically trained using larger datasets annotated by expert surgeons and focused on less-complex anatomy. Some of the high-accuracy algorithms were developed using pre-training and data augmentation. Conclusions The accuracy of included anatomy recognition algorithms varied substantially, ranging from moderate to good. Solid comparison between algorithms was complicated by the wide variety of applied methodology, target anatomical structures, and reported accuracy measures. Computer-aided intraoperative anatomy recognition is an upcoming research discipline, but still at its infancy. Larger datasets and methodological guidelines are required to improve accuracy and clinical applicability in future research. Trial registration: PROSPERO registration number: CRD42021264226
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwz2688完成签到,获得积分10
1秒前
TheBugsss完成签到,获得积分10
1秒前
yin完成签到,获得积分10
3秒前
5秒前
王俊完成签到,获得积分10
6秒前
小文完成签到 ,获得积分10
6秒前
科研通AI2S应助cach采纳,获得10
7秒前
朴实的小萱完成签到 ,获得积分10
9秒前
小七啊完成签到 ,获得积分10
9秒前
嘘嘘完成签到,获得积分10
11秒前
三伏天发布了新的文献求助20
11秒前
思绪摸摸头完成签到 ,获得积分10
11秒前
Gakay完成签到,获得积分10
12秒前
动听平露完成签到,获得积分10
14秒前
一心想出文章完成签到,获得积分0
16秒前
万能的小叮当完成签到,获得积分0
16秒前
xiao完成签到,获得积分10
18秒前
小二郎应助2222采纳,获得10
18秒前
20秒前
21秒前
江幻天完成签到,获得积分10
22秒前
fyjlfy完成签到 ,获得积分10
24秒前
asdfghjkl完成签到,获得积分10
25秒前
花花完成签到,获得积分10
25秒前
小蘑菇应助Ensh采纳,获得10
26秒前
李爱国应助张涛采纳,获得10
28秒前
伊酒应助LI采纳,获得10
28秒前
阿辉完成签到,获得积分10
28秒前
科研通AI2S应助asdfghjkl采纳,获得10
29秒前
小确幸完成签到,获得积分10
30秒前
31秒前
孟子豪完成签到,获得积分20
34秒前
guoguo应助weiyongswust采纳,获得10
34秒前
科目三应助难过的蘑菇采纳,获得10
34秒前
桑尼号完成签到,获得积分10
35秒前
大鹏完成签到,获得积分10
36秒前
37秒前
乐多完成签到,获得积分10
38秒前
2222完成签到,获得积分10
38秒前
guangshuang完成签到,获得积分10
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967110
关于积分的说明 8628328
捐赠科研通 2646630
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180