Study for the binding affinity of thyroid hormone receptors based on machine learning algorithm

数量结构-活动关系 结合亲和力 化学 甲状腺激素受体 适用范围 甲状腺 稳健性(进化) 分子描述符 支持向量机 激素 受体 机器学习 立体化学 计算机科学 生物化学 内分泌学 生物 基因
作者
N. Li,R.Q Cai,Ruining Guan,Wei Wang,Wenjing Liu,Chenxi Zhao
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:33 (8): 601-620 被引量:2
标识
DOI:10.1080/1062936x.2022.2100823
摘要

Long-term exposure of exogenous compounds to thyroid hormone receptors (TRs) may lead to thyroid dysfunction. Quantitative structure-activity relationship (QSAR) is expected to predicting the binding affinity of compounds to TR. In this work, two comprehensive and large datasets for TRα and TRβ were collected and investigated. Five machine learning models were established to predict the pIC50 of compounds. Meanwhile, the reliability of the models was ensured by a variety of evaluation parameters. The results showed that the support vector regression model exhibited the best robustness and external prediction ability (r2train = 0.77, r2test = 0.78 for TRα, r2train = 0.78, r2test = 0.80 for TRβ). We have proposed an appropriate mechanism for explaining the TR binding affinity of a compound. The molecular volume, mass, and aromaticity affected the activity of TRα. Molecular weight, electrical properties and molecular hydrophilicity played a significant role in the binding affinity of compounds to TRβ. We also characterized the application domain of the model. Finally, the obtained models were utilized to predict the TR binding affinities of 109 compounds from the list of endocrine disruptors. Therefore, this model is expected to be an effective tool for alerting the effects of exogenous compounds on the thyroid system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助culiucabbage采纳,获得10
刚刚
1秒前
1秒前
1秒前
orixero应助嘻嘻采纳,获得10
2秒前
2秒前
科目三应助健康的半仙采纳,获得10
2秒前
华仔应助健康的半仙采纳,获得10
2秒前
云纳应助健康的半仙采纳,获得10
2秒前
FashionBoy应助健康的半仙采纳,获得10
3秒前
爆米花应助健康的半仙采纳,获得10
3秒前
大个应助健康的半仙采纳,获得10
3秒前
领导范儿应助健康的半仙采纳,获得10
3秒前
3秒前
5秒前
5秒前
123发布了新的文献求助10
5秒前
6秒前
天真璎发布了新的文献求助10
6秒前
6秒前
失眠听南完成签到,获得积分10
6秒前
生生不息关注了科研通微信公众号
7秒前
顺利的蘑菇完成签到 ,获得积分10
7秒前
赘婿应助一个大西瓜采纳,获得10
8秒前
8秒前
凶狠的谷蓝完成签到,获得积分10
9秒前
赖娩完成签到 ,获得积分10
9秒前
众生平等完成签到,获得积分10
9秒前
9秒前
swayqur完成签到,获得积分10
10秒前
Alma发布了新的文献求助10
11秒前
王咚咚完成签到,获得积分20
11秒前
众生平等发布了新的文献求助10
12秒前
culiucabbage发布了新的文献求助10
13秒前
13秒前
RayHey发布了新的文献求助10
13秒前
lijiauyi1994发布了新的文献求助10
13秒前
花花完成签到 ,获得积分10
14秒前
丘比特应助黎明森采纳,获得10
15秒前
思源应助杨晰采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527