Study for the binding affinity of thyroid hormone receptors based on machine learning algorithm

数量结构-活动关系 结合亲和力 化学 甲状腺激素受体 适用范围 甲状腺 稳健性(进化) 分子描述符 支持向量机 激素 受体 机器学习 立体化学 计算机科学 生物化学 内分泌学 生物 基因
作者
N. Li,R.Q Cai,Ruining Guan,Wei Wang,Wenjing Liu,Chenxi Zhao
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:33 (8): 601-620 被引量:2
标识
DOI:10.1080/1062936x.2022.2100823
摘要

Long-term exposure of exogenous compounds to thyroid hormone receptors (TRs) may lead to thyroid dysfunction. Quantitative structure-activity relationship (QSAR) is expected to predicting the binding affinity of compounds to TR. In this work, two comprehensive and large datasets for TRα and TRβ were collected and investigated. Five machine learning models were established to predict the pIC50 of compounds. Meanwhile, the reliability of the models was ensured by a variety of evaluation parameters. The results showed that the support vector regression model exhibited the best robustness and external prediction ability (r2train = 0.77, r2test = 0.78 for TRα, r2train = 0.78, r2test = 0.80 for TRβ). We have proposed an appropriate mechanism for explaining the TR binding affinity of a compound. The molecular volume, mass, and aromaticity affected the activity of TRα. Molecular weight, electrical properties and molecular hydrophilicity played a significant role in the binding affinity of compounds to TRβ. We also characterized the application domain of the model. Finally, the obtained models were utilized to predict the TR binding affinities of 109 compounds from the list of endocrine disruptors. Therefore, this model is expected to be an effective tool for alerting the effects of exogenous compounds on the thyroid system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Jasmine完成签到,获得积分10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
Jasper应助石家豪采纳,获得30
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得30
5秒前
顾矜应助Vanness采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
可不乐完成签到,获得积分10
5秒前
xzn1123应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
小新应助科研通管家采纳,获得10
6秒前
xzn1123应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
甜甜青文完成签到 ,获得积分10
7秒前
Orange应助拼搏的桐采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337