Relief-Surface-Based On-Chip Hybrid Diffraction Neural Network Enabled by Authentic All-Optical Fully Connected Architecture

衍射 炸薯条 材料科学 曲面(拓扑) 人工神经网络 建筑 计算机科学 光电子学 纳米技术 光学 电信 物理 人工智能 几何学 艺术 视觉艺术 数学
作者
Haiqi Gao,Shaoqing Yu,Yipeng Chen,Yu-Jie Liu,Junren Wen,Haidong He,Yuchuan Shao,Yueguang Zhang,Weidong Shen,Chenying Yang
出处
期刊:ACS Photonics [American Chemical Society]
标识
DOI:10.1021/acsphotonics.4c01342
摘要

Optical Diffraction Neural Networks (DNNs), a subset of Optical Neural Networks (ONNs), show promise in mirroring the prowess of electronic networks. This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs, synergizing the benefits of conventional ONNs with those of DNNs to surmount the modulation limitations inherent in optical diffraction neural networks. Utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39 and 89% in digit recognition tasks in simulation and experiment, respectively. Additionally, we develop the Binning Design (BD) method, which effectively mitigates the constraints imposed by sampling intervals on diffraction units, substantially streamlining experimental procedures. Furthermore, we propose an On-chip HDNN that not only employs a beam-splitting phase modulation layer for enhanced integration level but also significantly relaxes device fabrication requirements, replacing metasurfaces with relief surfaces designed by 1-bit quantization. Besides, we conceptualized an all-optical HDNN-assisted lesion detection network, achieving detection outcomes that were 100% aligned with simulation predictions. This work not only advances the performance of DNNs but also streamlines the path toward industrial optical neural network production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰元蝶发布了新的文献求助10
刚刚
刚刚
华仔应助天天采纳,获得10
1秒前
大个应助天天采纳,获得10
1秒前
working完成签到,获得积分10
1秒前
汉堡包应助天天采纳,获得10
1秒前
无花果应助天天采纳,获得10
1秒前
万能图书馆应助天天采纳,获得10
1秒前
东方元语应助天天采纳,获得20
1秒前
南海子完成签到,获得积分20
1秒前
无极微光应助天天采纳,获得20
1秒前
无极微光应助天天采纳,获得20
1秒前
烟花应助喜悦的易槐采纳,获得10
1秒前
惠飞薇完成签到 ,获得积分10
1秒前
2秒前
2秒前
背后的小白菜完成签到,获得积分10
2秒前
wkkkkkkk发布了新的文献求助10
2秒前
达雨发布了新的文献求助10
2秒前
2秒前
dd完成签到,获得积分10
2秒前
Hello应助12采纳,获得10
3秒前
4秒前
coldspringhao完成签到,获得积分10
5秒前
tt发布了新的文献求助10
5秒前
5秒前
佟莫言发布了新的文献求助10
6秒前
科目三应助健忘慕青采纳,获得10
6秒前
6秒前
科研通AI6应助张张采纳,获得10
6秒前
科目三应助犹豫晓啸采纳,获得10
6秒前
heather发布了新的文献求助10
7秒前
Alex完成签到,获得积分10
7秒前
wanci应助小卡采纳,获得10
8秒前
bkagyin应助7890733采纳,获得10
9秒前
Orange应助wkkkkkkk采纳,获得10
9秒前
Hayat应助玛卡巴卡采纳,获得30
9秒前
YZHANG142完成签到,获得积分10
10秒前
自觉翠安完成签到,获得积分10
11秒前
Hua发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244