Integrating EPSOSA-BP neural network algorithm for enhanced accuracy and robustness in optimizing coronary artery disease prediction

稳健性(进化) 冠状动脉疾病 计算机科学 人工神经网络 人工智能 机器学习 模式识别(心理学) 心脏病学 算法 医学 生物 生物化学 基因
作者
Chengjie Li,Yanglin Wang,Linghui Meng,Wen Zhong,Chengfang Zhang,Tao Liu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82184-2
摘要

Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_Z11kkZ发布了新的文献求助10
2秒前
2秒前
3秒前
PSA发布了新的文献求助10
3秒前
领导范儿应助4477采纳,获得10
3秒前
DJANGO完成签到,获得积分10
3秒前
紧张的含羞草完成签到,获得积分10
4秒前
桐桐应助貔貅采纳,获得10
5秒前
Jasper应助果实采纳,获得10
5秒前
爆米花应助云祱采纳,获得10
5秒前
隐形曼青应助ark861023采纳,获得10
6秒前
吴军霄发布了新的文献求助10
7秒前
9秒前
无花果应助王羊补牢采纳,获得10
11秒前
11秒前
白桃小罐头完成签到,获得积分10
13秒前
SHANEE发布了新的文献求助10
14秒前
安静书雁发布了新的文献求助30
14秒前
领导范儿应助Liangyu采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
淡然的书蝶完成签到,获得积分10
20秒前
研友_Z11kkZ完成签到,获得积分20
20秒前
277完成签到 ,获得积分10
22秒前
博修发布了新的文献求助10
22秒前
22秒前
22秒前
安静书雁完成签到,获得积分10
23秒前
线条应助科研通管家采纳,获得10
23秒前
Dada应助科研通管家采纳,获得30
23秒前
103921wjk完成签到,获得积分10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
NL14D驳回了hz52应助
23秒前
天天快乐应助科研通管家采纳,获得10
24秒前
hi应助科研通管家采纳,获得10
24秒前
24秒前
saberLee完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150