Sigma Metrics misconceptions and limitations

六西格玛 工作流程 西格玛 计算机科学 公制(单位) 可靠性工程 理论(学习稳定性) 事件(粒子物理) 质量(理念) 价值(数学) 度量(数据仓库) 控制(管理) 统计 数据挖掘 数学 物理 人工智能 运营管理 机器学习 工程类 精益制造 量子力学 数据库
作者
Xincen Duan,Elvar Theodorsson,Wei Guo,Tony Badrick
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
标识
DOI:10.1515/cclm-2024-1380
摘要

Abstract Objectives This paper further explores the Sigma Metric (SM) and its application in clinical chemistry. It discusses the SM, assay stability, and control failure relationship. Content : SM is not a valid measure of assay stability or the likelihood of failure. When an out-of-control event occurs for an assay with a higher SM value, the same QC rule will have greater power to detect error than assays with a lower SM value. Thus, it is easier to prevent errors from happening for higher SM assays. This rationale encourages using more frequent QC events and more QC samples for a QC scheme of a low SM assay or simply more QC cost for low SM assays. A laboratory can have a high-precision instrument that frequently fails and a low-precision instrument that hardly ever fails. Parvin’s patient risk model presumes the bracketed continuous mode (BCM) testing workflow. If overlooked when designing QC schemes, this leads to the common misconception of the SM that one can save the cost of QC since assays with high SM require less frequent QC to ensure patient risk. There is no evidence that an assay’s precision is correlated with its failure rate. Schmidt et al., in a series of papers, showed that an assay with a higher P f or shift in probability will have a higher expected number of unacceptable results. Incorporating P f into the QC design process presents significant challenges despite the proactive quality control (PQC) methodology. Summary Unfortunately, TEa Six Sigma, as widely practiced in Clinical Chemistry, is not based on classical Six Sigma mathematical statistics. Classical Six Sigma would facilitate comparing results across activities where the principles of Six Sigma are employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青丝落花完成签到,获得积分10
刚刚
化学小学生完成签到,获得积分10
刚刚
1秒前
完美世界应助高高迎蓉采纳,获得10
1秒前
已拿捏催化剂完成签到 ,获得积分10
1秒前
WJM发布了新的文献求助10
1秒前
左丘忻完成签到,获得积分10
1秒前
2秒前
端庄的萝发布了新的文献求助20
2秒前
孟严青完成签到,获得积分10
2秒前
livra1058完成签到,获得积分10
2秒前
wonderting完成签到,获得积分10
2秒前
无敌小汐完成签到,获得积分10
3秒前
3秒前
圈圈发布了新的文献求助10
3秒前
EW完成签到,获得积分10
3秒前
4秒前
金鸡奖完成签到,获得积分10
4秒前
研友_LNB7rL完成签到,获得积分10
4秒前
11发布了新的文献求助10
5秒前
经法发布了新的文献求助10
5秒前
bjbbh完成签到,获得积分10
6秒前
Skyrin发布了新的文献求助10
6秒前
6秒前
阿蒙完成签到,获得积分10
7秒前
传奇3应助个木采纳,获得10
7秒前
7秒前
ShawnWei完成签到,获得积分10
7秒前
飘逸秋荷完成签到,获得积分10
7秒前
年年完成签到,获得积分10
7秒前
8秒前
8秒前
四季刻歌发布了新的文献求助20
8秒前
乐乐应助努力学习采纳,获得10
8秒前
8秒前
wwt完成签到,获得积分10
8秒前
8秒前
666完成签到,获得积分10
9秒前
Ripples完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678