Influence of cross-trial distractor volatility on statistical learning of spatial distractor suppression

波动性(金融) 心理学 认知心理学 计量经济学 经济
作者
Nan Qiu,Fredrik Allenmark,Hermann J. Müller,Zhuanghua Shi
出处
期刊:Visual Cognition [Informa]
卷期号:: 1-16
标识
DOI:10.1080/13506285.2024.2438410
摘要

Learning to suppress location(s) where a distractor frequently occurs can improve search efficiency, known as distractor-location probability-cueing. However, the impact of the volatility of distractor occurrence – how often distractor-present and – absent events switch – remains poorly understood. To investigate this, we contrasted two volatility regimens in an additional-singleton search paradigm: a low-volatility environment in which distractor-present trials tended to occur in streaks, and a high-volatility environment with more frequent alternations. The distractor appeared 13 times more often at a designated frequent location than any rare locations. We replicated the probability-cueing effect, which was consistent across both volatilty conditions. Interestingly, the target-location effect – slower responses to a target at the frequent distractor location – was robust in the high-volatility condition, but non-significant in the low-volatility condition. We propose a suppression-thresholding account: the activation threshold of the saliency-triggered suppression mechanism is dynamically adjusted based on the volatility and local frequency of distractor occurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助阳阳采纳,获得10
1秒前
专注秋尽发布了新的文献求助10
2秒前
4秒前
默默的棒棒糖完成签到 ,获得积分10
6秒前
6秒前
SONG关注了科研通微信公众号
6秒前
7秒前
ding应助呆头采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
axin应助科研通管家采纳,获得10
7秒前
terence应助科研通管家采纳,获得30
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
hh应助科研通管家采纳,获得10
7秒前
sun发布了新的文献求助10
8秒前
8秒前
zhu完成签到,获得积分10
8秒前
酷波er应助缚大哥采纳,获得10
9秒前
李健应助明理雨筠采纳,获得10
9秒前
wang发布了新的文献求助10
11秒前
木头人给step_stone的求助进行了留言
11秒前
魏伯安完成签到,获得积分10
12秒前
朴素尔岚发布了新的文献求助10
13秒前
科研通AI5应助nextconnie采纳,获得10
13秒前
务实的犀牛完成签到,获得积分10
14秒前
14秒前
Blue_Pig发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助橙子fy16_采纳,获得10
16秒前
LGJ完成签到,获得积分10
16秒前
wang完成签到,获得积分10
18秒前
19秒前
20秒前
脑洞疼应助Blue_Pig采纳,获得10
22秒前
23秒前
Akim应助危机的尔蝶采纳,获得10
24秒前
SONG发布了新的文献求助50
24秒前
明理雨筠发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849