亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study on Rapid Quantitative Detection of Soil MPs Based on Terahertz Time-Domain Spectroscopy

化学 光谱学 太赫兹辐射 时域 太赫兹光谱与技术 太赫兹时域光谱学 分析化学(期刊) 色谱法 光电子学 计算机视觉 计算机科学 量子力学 物理
作者
Lijia Xu,Yanqi Feng,Ao Feng,Yang Yuping,Yanjun Chen,Bo Liu,Ning Yang,Ma Wei,Yong He,Zhijun Wu,Yuchao Wang,Yongpeng Zhao
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05736
摘要

The presence of microplastics (MPs) in agricultural soils substantially affects the growth, reproduction, feeding, survival, and immunity levels of soil biota. Therefore, it is crucial to investigate fast, effective, and accurate techniques for the detection of soil MPs. This work explores the integration of terahertz time-domain spectroscopy (THz-TDS) techniques with machine learning algorithms to develop a method for the classification and detection of MPs. First, THz spectral image data were preprocessed using moving average (MA). Subsequently, three classification models were developed, including random forest (RF), linear discriminant analysis, and support vector machine (SVM). Notably, the SVM model had an F1 score of 0.9817, demonstrating its ability to rapidly classify MPs in soil samples. Three regression models, namely, principal component regression (PCR), RF, and least squares support vector machine (LSSVM), were developed for the detection of three MPs polymers in agricultural soils. Six feature extraction methods were used to extract the relevant parts of the data containing key information. The results of the study showed that the regression accuracies of PCR, RF, and LSSVM were greater than 83%. Among them, the RF had the highest overall regression accuracy. Notably, PE-UVE-RF had the best performance with Rc2, Rp2, root mean square error of calibration, and root mean square error of prediction values of 0.9974, 0.9916, 0.1595, and 0.2680, respectively. Furthermore, this model gets a better performance by hypothesis testing and predicting real samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
999完成签到,获得积分10
11秒前
土豆你个西红柿完成签到 ,获得积分10
22秒前
科研通AI5应助young采纳,获得10
23秒前
楼下小白龙完成签到 ,获得积分10
29秒前
billkin完成签到,获得积分10
30秒前
我是老大应助jjwwcsa采纳,获得10
30秒前
疯狂的飞机完成签到,获得积分20
31秒前
38秒前
sofia完成签到,获得积分10
38秒前
彭于晏应助科研小透明采纳,获得50
42秒前
纵念发布了新的文献求助10
42秒前
科研通AI5应助xiaolan采纳,获得30
43秒前
44秒前
Orange应助史巴兰采纳,获得10
44秒前
丘比特应助于惜采纳,获得10
47秒前
程风破浪发布了新的文献求助10
47秒前
47秒前
小屁孩完成签到,获得积分10
47秒前
49秒前
乐乐应助GLLHHH采纳,获得10
49秒前
纵念完成签到,获得积分10
51秒前
辛巴大猪完成签到,获得积分10
51秒前
52秒前
悦耳诗筠发布了新的文献求助10
52秒前
史巴兰完成签到,获得积分10
52秒前
ZXD1989完成签到 ,获得积分10
53秒前
young发布了新的文献求助10
54秒前
史巴兰发布了新的文献求助10
56秒前
56秒前
红岩关注了科研通微信公众号
58秒前
59秒前
sofia发布了新的文献求助10
59秒前
1分钟前
1分钟前
jjwwcsa发布了新的文献求助10
1分钟前
于惜发布了新的文献求助10
1分钟前
1分钟前
GLLHHH发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590608
求助须知:如何正确求助?哪些是违规求助? 3158980
关于积分的说明 9521862
捐赠科研通 2861904
什么是DOI,文献DOI怎么找? 1572850
邀请新用户注册赠送积分活动 738262
科研通“疑难数据库(出版商)”最低求助积分说明 722720