Machine Learned Potential for High-Throughput Phonon Calculations of Metal-Organic Frameworks

金属有机骨架 吞吐量 声子 材料科学 纳米技术 计算机科学 化学 物理 凝聚态物理 物理化学 电信 吸附 无线
作者
Alin M. Elena,P.S. Kamath,Théo Jaffrelot Inizan,Andrew Rosen,Federica Zanca,Kristin A. Persson
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.02877
摘要

Metal-organic frameworks (MOFs) are highly porous and versatile materials studied extensively for applications such as carbon capture and water harvesting. However, computing phonon-mediated properties in MOFs, like thermal expansion and mechanical stability, remains challenging due to the large number of atoms per unit cell, making traditional Density Functional Theory (DFT) methods impractical for high-throughput screening. Recent advances in machine learning potentials have led to foundation atomistic models, such as MACE-MP-0, that accurately predict equilibrium structures but struggle with phonon properties of MOFs. In this work, we developed a workflow for computing phonons in MOFs within the quasi-harmonic approximation with a fine-tuned MACE model, MACE-MP-MOF0. The model was trained on a curated dataset of 127 representative and diverse MOFs. The fine-tuned MACE-MP-MOF0 improves the accuracy of phonon density of states and corrects the imaginary phonon modes of MACE-MP-0, enabling high-throughput phonon calculations with state-of-the-art precision. The model successfully predicts thermal expansion and bulk moduli in agreement with DFT and experimental data for several well-known MOFs. These results highlight the potential of MACE-MP-MOF0 in guiding MOF design for applications in energy storage and thermoelectrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卢锡安关注了科研通微信公众号
1秒前
Luo完成签到,获得积分10
2秒前
捡垃圾的小破烂完成签到 ,获得积分10
2秒前
万能图书馆应助Yn采纳,获得10
3秒前
4秒前
xms完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助xiaofei666采纳,获得20
5秒前
5秒前
黑薏米粥粉完成签到,获得积分10
6秒前
6秒前
打打应助听话的梦之采纳,获得10
8秒前
良辰应助cheiman369采纳,获得20
8秒前
8秒前
8秒前
洪山老狗发布了新的文献求助10
9秒前
慕青应助小乔采纳,获得10
10秒前
p13508397190完成签到,获得积分10
10秒前
luyuheng95发布了新的文献求助10
10秒前
11秒前
han发布了新的文献求助10
11秒前
烟花应助qifeng采纳,获得10
12秒前
12秒前
曲光彩发布了新的文献求助10
13秒前
粗心的新之完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
hh发布了新的文献求助10
14秒前
失眠觅云发布了新的文献求助10
15秒前
小慈爱鸡完成签到 ,获得积分10
15秒前
良辰应助稳重的谷南采纳,获得10
16秒前
Jin发布了新的文献求助10
16秒前
16秒前
18秒前
JamesPei应助洪山老狗采纳,获得10
18秒前
han完成签到,获得积分10
18秒前
小pan完成签到 ,获得积分10
18秒前
曲光彩完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306741
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497451
捐赠科研通 2614749
什么是DOI,文献DOI怎么找? 1428486
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259