纳米材料
钼
复合数
伤口愈合
纳米技术
材料科学
化学
冶金
复合材料
医学
免疫学
作者
Zhen Yang,Jiaqian You,Shaobo Zhai,Jing Zhou,Sezhen Quni,Manxuan Liu,Lu Zhang,Rui Ma,Qiuyue Qin,Huimin Huangfu,Yidi Zhang,Yanmin Zhou
标识
DOI:10.1016/j.mtbio.2025.101481
摘要
With the increasing prevalence of drug-resistant bacterial infections, wound bacterial infections have evolved into an escalating medical problem that poses a threat to the individual health as well as global public health. Traditional drug therapy not only suffers from a single treatment method, low drug utilisation and limited therapeutic effect, but long-term antibiotic abuse has significantly increased bacterial resistance. It is imperative to develop an antibiotic-free biomaterial with antibacterial and anti-inflammatory properties. The current use of photothermal therapy (PTT) and photodynamic therapy (PDT) relies on the generation of massive reactive oxygen species (ROS), which inevitably aggravates the inflammatory response. Herein, we developed AuAg bimetallic nanoparticles based on PDA modification and prepared a novel MoS2-based composite nanomaterials (AuAg@PDA-MoS2 NPs) with multiple mechanisms of antibacterial and anti-inflammatory potentials through the adhesion of PDA. In the early phase, PDT and PTT generated a large amount of ROS for rapid sterilisation. While in the later stage, MoS2 mimicked the peroxidase activity to leverage the ROS, balancing the generation of ROS in the infected environment to achieve the long-term anti-inflammatory. In vitro experiments showed that the killing efficiency of AuAg@PDA-MoS2 NPs was nearly 99 % under the irradiation of 808 nm near-infrared light for 10 min, which demonstrated excellent antibacterial activity. In vivo experiments showed that 808 nm NIR-assisted AuAg@PDA-MoS2 NPs to effectively inhibit infection, alleviated the inflammation, and accelerated the wound healing process. Therefore, AuAg@PDA-MoS2 NPs as a novel biomaterial could achieve programmed antimicrobial and anti-inflammatory effects, which has a promising potential for future application in the treatment of infected wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI