Development and external validation of an algorithm for self‐identification of risk for microvascular complications in patients with type 1 diabetes

医学 2型糖尿病 鉴定(生物学) 算法 糖尿病 重症监护医学 内分泌学 计算机科学 植物 生物
作者
Wei Liu,Xiaodan Hu,Yayu Fang,Shenda Hong,Yu Zhu,Mingxia Zhang,Siqian Gong,Xiangqing Wang,Chu Lin,Rui Zhang,Sai Y,Juan Li,Yong Huo,Xiaoling Cai,Linong Ji
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:27 (2): 740-749 被引量:3
标识
DOI:10.1111/dom.16068
摘要

Abstract Aims Microvascular complications, such as diabetic retinopathy (DR), diabetic nephropathy (DN) and diabetic peripheral neuropathy (DPN), are common and serious outcomes of inadequately managed type 1 diabetes (T1D). Timely detection and intervention in these complications are crucial for improving patient outcomes. This study aimed to develop and externally validate machine learning (ML) models for self‐identification of microvascular complication risks in T1D population. Materials and Methods Utilizing data from the Chinese Type 1 Diabetes Comprehensive Care Pathway program, 911 T1D patients and 15 patient self‐reported variables were included. Combined with XGBoost algorithm and cross‐validation, self‐identification models were constructed with 5 variables selected by feature importance ranking. For external validation, an online survey was conducted within a nationwide T1D online community ( N = 157). The area under the receiver‐operating‐characteristic curve (AUROC) was adopted as the main metric to evaluate the model performance. The SHapley Additive exPlanation was utilized for model interpretation. Results The prevalence rates of microvascular complications in the development set and external validation set were as follows: DR 7.0% and 12.7% ( p = 0.013), DN 5.9% and 3.2% ( p = 0.162) and DPN 10.5% and 20.4% ( p < 0.001). The models demonstrated the AUROC values of 0.889 for DR, 0.844 for DN and 0.839 for DPN during internal validation. For external validation, the AUROC values achieved 0.762 for DR, 0.718 for DN and 0.721 for DPN. Conclusions ML models, based on self‐reported data, have the potential to serve as a self‐identification tool, empowering T1D patients to understand their risks outside of hospital settings and encourage early engagement with healthcare services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王丹丹发布了新的文献求助10
1秒前
打打应助dian采纳,获得10
1秒前
1秒前
AN关闭了AN文献求助
1秒前
whjbb完成签到,获得积分20
2秒前
2秒前
打打应助micexily采纳,获得10
3秒前
Sean完成签到,获得积分10
3秒前
科研通AI6应助小巧酸奶采纳,获得10
4秒前
xiuT完成签到,获得积分10
4秒前
王一正完成签到,获得积分10
5秒前
高级牛马完成签到 ,获得积分10
5秒前
5秒前
5秒前
科研互通完成签到,获得积分10
6秒前
huhdcid发布了新的文献求助10
7秒前
狗大王完成签到,获得积分10
7秒前
8秒前
8秒前
Sean发布了新的文献求助10
8秒前
9秒前
祝佳其完成签到 ,获得积分10
9秒前
10秒前
11秒前
Lynne完成签到,获得积分10
12秒前
孔孔发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助30
13秒前
深情安青应助程小小采纳,获得10
14秒前
小靳完成签到,获得积分10
14秒前
明理的道天完成签到 ,获得积分10
15秒前
15秒前
sfafasfsdf完成签到,获得积分10
16秒前
16秒前
eo发布了新的文献求助10
17秒前
小靳发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
领导范儿应助zgl0806采纳,获得10
19秒前
小米发布了新的文献求助10
19秒前
桐桐应助科研通管家采纳,获得20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365