Identification and Analysis of Pork Freshness Quality Based on Improved MobileNetV3

鉴定(生物学) 质量(理念) 食品科学 环境科学 生物技术 生物 植物 物理 量子力学
作者
Chenggang Zhou,Jie Pi,Xiao Dong Chen,Daoying Wang,Jun Liu
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:41 (1): 57-66
标识
DOI:10.13031/aea.16131
摘要

Highlights Model can perform pork freshness quality testing under complex lighting. MobileNetV3_E outperforms other state-of-the-art models. Model achieve an optimal balance between performance and volume. Model supports deployment on edge devices. Abstract. The accurate appraisal of freshness is influenced by the color of the meat, which is a critical indicator of pork’s freshness. However, lighting changes can also influence consumers’ perceptions of meat color. To address this issue, this study recommends a pork freshness detection method based on the lightweight MobileNetV3 model that can effectively handle interference from complex lighting environments. In this study, a lighting factor is introduced into the original dataset. The results are compared with experiments without lighting interference, showing that lighting interference leads to varying degrees of model performance degradation. This investigation introduces Efficient Channel Attention (ECA) into the MobileNetV3 model (MobileNetV3_E), redefines the h-sigmoid and h-swish activation functions, and fine-tunes the model training using the official pre-training weights to achieve the optimal balance between model performance and volume. Only the ECA module-related layers and custom fully connected layers are trained. The experimental results show that MobileNetV3_E is less affected by the lighting interference and still maintains exceptional performance on the test set, where the accuracy is 98.6%, the loss function value is 0.069, the precision is 98.6%, the recall is 98.5%, and the F1-Score is 98.5%. The MobileNetV3_E model achieves a compact size of 17.34 MB, making it suitable for deployment on resource-constrained devices. It indicates that the MobileNetV3_E model provides an efficient, reliable and easy-to-deploy solution for pork freshness detection under complex lighting conditions, which is of great application value. Keywords: Deep learning, MobileNetV3 network, Non-destructive testing, Pork freshness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daisy完成签到,获得积分10
刚刚
刚刚
1秒前
林思琦发布了新的文献求助10
1秒前
Ya发布了新的文献求助10
2秒前
西西完成签到,获得积分10
2秒前
萌神_HUGO发布了新的文献求助10
2秒前
李志平完成签到 ,获得积分10
2秒前
玉米发布了新的文献求助10
2秒前
3秒前
LQ发布了新的文献求助20
3秒前
淳于安筠完成签到,获得积分10
3秒前
4秒前
安在哉发布了新的文献求助20
4秒前
meww完成签到,获得积分10
4秒前
liyun发布了新的文献求助10
4秒前
lzzzz完成签到,获得积分10
4秒前
kk完成签到,获得积分10
4秒前
lalaland完成签到,获得积分10
4秒前
quincy发布了新的文献求助50
5秒前
虚心求学完成签到,获得积分10
5秒前
画画完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
一块小饼干完成签到 ,获得积分10
6秒前
Jackson完成签到,获得积分10
6秒前
7秒前
研友_ZAyRmZ完成签到,获得积分10
7秒前
7秒前
7秒前
ArcMayuri完成签到,获得积分10
8秒前
8秒前
如烈火如止水完成签到,获得积分10
8秒前
金荣发布了新的文献求助10
9秒前
科研通AI5应助葫芦家二娃采纳,获得10
9秒前
小蘑菇应助su采纳,获得10
9秒前
momo123发布了新的文献求助10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729599
求助须知:如何正确求助?哪些是违规求助? 3274630
关于积分的说明 9987565
捐赠科研通 2989918
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748200