An improved method to predict man-made slope failure using machine learning tools

岩土工程 边坡稳定性 地质学 计算机科学 工程类
作者
C.W.W. Ng,Yang Liu,J.S.H. Kwan,Raymond Cheung,Qi Zhang
出处
期刊:Canadian Geotechnical Journal [Canadian Science Publishing]
标识
DOI:10.1139/cgj-2024-0139
摘要

Landslide hazards associated with man-made slopes are increasing due to ageing and extreme weather conditions under a changing climate. To effectively mitigate landslide risks, the implementation of regional landslide early warning systems are desirable albeit challenging, if not impossible, due to the scarcity of reliable landslide data and suitable predictive tools. In this paper, a thorough analysis has been conducted on reasonably reliable and substantial amounts of historical rainfall data, slope features and landslide inventory of man-made slope failures in Hong Kong. Four different machine learning methods, namely logistic regression (LR), decision tree (DT), random forest (RF) and extreme gradient boosting (XGBoost) have been employed. The predicted number of landslides from the machine learning methods is compared with the predictions made by the current Landslip Warning System in Hong Kong. The effects of rainfall parameters and slope features on model performance are also investigated. The analysed results show that dynamic rainfall conditions are identified as the most influential factors for predicting man-made slope landslide. A combination of 1-h and 12-h maximal rolling rainfall (MRR) demonstrate superior performance compared to relying solely on the 24-h MRR. Therefore, this combination is recommended for predicting man-made slope failures in Hong Kong.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车茗应助明亮的绫采纳,获得20
刚刚
Mingyue123完成签到,获得积分10
5秒前
8秒前
在水一方应助miaolingcool采纳,获得10
9秒前
10秒前
10秒前
小鱼爱吃肉应助缓慢平蓝采纳,获得10
11秒前
zhw发布了新的文献求助10
11秒前
浅浅完成签到 ,获得积分10
13秒前
嘻嘻完成签到 ,获得积分10
14秒前
15秒前
鳗鱼鞋垫发布了新的文献求助10
17秒前
善学以致用应助tjpuzhang采纳,获得10
19秒前
23秒前
Edward完成签到 ,获得积分10
25秒前
冰语心蓝完成签到,获得积分10
26秒前
miaolingcool发布了新的文献求助10
26秒前
干净幼蓉发布了新的文献求助30
26秒前
29秒前
呼呼啦啦完成签到,获得积分10
29秒前
冰语心蓝给冰语心蓝的求助进行了留言
32秒前
33秒前
LMBE1K完成签到 ,获得积分10
33秒前
33秒前
34秒前
35秒前
tjpuzhang发布了新的文献求助10
37秒前
微笑的人形立牌完成签到,获得积分10
37秒前
未夕晴发布了新的文献求助10
38秒前
lxrrrr发布了新的文献求助10
38秒前
41秒前
故意的驳完成签到,获得积分20
44秒前
46秒前
宋晓静完成签到,获得积分10
47秒前
48秒前
XRT关闭了XRT文献求助
50秒前
乐乐应助科研通管家采纳,获得10
51秒前
cocolu应助科研通管家采纳,获得20
51秒前
orixero应助科研通管家采纳,获得10
51秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347722
求助须知:如何正确求助?哪些是违规求助? 2974226
关于积分的说明 8662783
捐赠科研通 2654856
什么是DOI,文献DOI怎么找? 1453721
科研通“疑难数据库(出版商)”最低求助积分说明 673024
邀请新用户注册赠送积分活动 663237