Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography

医学 组内相关 放射科 血管造影 人工智能 分割 深度学习 多中心研究 Sørensen–骰子系数 医学物理学 外科 计算机科学 图像分割 临床心理学 随机对照试验 心理测量学
作者
Yi Yang,Chang Zhao,Xin Nie,Jun Wu,Jingang Chen,W Liu,Hongwei He,Shuo Wang,Chengcheng Zhu,Qingyuan Liu
出处
期刊:Radiology [Radiological Society of North America]
被引量:2
标识
DOI:10.1148/ryai.240017
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospective study, patients with CTA examinations, including those with and without UIAs, in a tertiary referral hospital from February 2018 to February 2021 were included as the training dataset. Patients with UIAs who underwent CTA at multiple centers between April 2021 to December 2022 were included as the multicenter external testing set. An integrated deep-learning (IDL) model was developed for UIA detection, segmentation and morphologic measurement using an nnU-net algorithm. Model performance was evaluated using the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC), with measurements by senior radiologists serving as the reference standard. The ability of the IDL model to improve performance of junior radiologists in measuring morphologic UIA features was assessed. Results The study included 1182 patients with UIAs and 578 controls without UIAs as the training dataset (55 years [IQR, 47–62], 1,012 [57.5%] females) and 535 patients with UIAs as the multicenter external testing set (57 years [IQR, 50–63], 353 [66.0%] females). The IDL model achieved 97% accuracy in detecting UIAs and achieved a DSC of 0.90 (95%CI, 0.88–0.92) for UIA segmentation. Model-based morphologic measurements showed good agreement with reference standard measurements (all ICCs > 0.85). Within the multicenter external testing set, the IDL model also showed agreement with reference standard measurements (all ICCs > 0.80). Junior radiologists assisted by the IDL model showed significantly improved performance in measuring UIA size (ICC improved from 0.88 [0.80–0.92] to 0.96 [0.92–0.97], P < .001). Conclusion The developed integrated deep learning model using CTA data showed good performance in UIA detection, segmentation and morphologic measurement and may be used to assist less experienced radiologists in morphologic analysis of UIAs. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安发布了新的文献求助150
1秒前
袁玥完成签到 ,获得积分10
1秒前
野性的冬日完成签到,获得积分10
1秒前
2秒前
2秒前
修辛发布了新的文献求助10
3秒前
羊蛋儿完成签到,获得积分10
3秒前
congenialboy发布了新的文献求助30
4秒前
5秒前
羊蛋儿发布了新的文献求助10
6秒前
6秒前
7秒前
zhq发布了新的文献求助10
7秒前
情怀应助Ayuyu采纳,获得10
9秒前
9秒前
YJ888发布了新的文献求助10
10秒前
王紫青完成签到,获得积分10
10秒前
672发布了新的文献求助10
11秒前
Agq完成签到,获得积分10
12秒前
彭于晏应助学术菜鸡123采纳,获得30
13秒前
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
yizhiGao应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
14秒前
ding应助fei采纳,获得10
15秒前
落叶完成签到,获得积分10
16秒前
yydragen应助可爱无招采纳,获得50
17秒前
slx发布了新的文献求助10
18秒前
科研通AI2S应助机智的水风采纳,获得10
18秒前
叮当发布了新的文献求助10
18秒前
haha发布了新的文献求助50
20秒前
孙燕应助keyun采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176