Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography

医学 组内相关 放射科 血管造影 人工智能 分割 深度学习 多中心研究 Sørensen–骰子系数 医学物理学 外科 计算机科学 图像分割 临床心理学 随机对照试验 心理测量学
作者
Yi Yang,Chang Zhao,Xin Nie,Jun Wu,Jingang Chen,W Liu,Hongwei He,Shuo Wang,Chengcheng Zhu,Qingyuan Liu
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240017
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospective study, patients with CTA examinations, including those with and without UIAs, in a tertiary referral hospital from February 2018 to February 2021 were included as the training dataset. Patients with UIAs who underwent CTA at multiple centers between April 2021 to December 2022 were included as the multicenter external testing set. An integrated deep-learning (IDL) model was developed for UIA detection, segmentation and morphologic measurement using an nnU-net algorithm. Model performance was evaluated using the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC), with measurements by senior radiologists serving as the reference standard. The ability of the IDL model to improve performance of junior radiologists in measuring morphologic UIA features was assessed. Results The study included 1182 patients with UIAs and 578 controls without UIAs as the training dataset (55 years [IQR, 47–62], 1,012 [57.5%] females) and 535 patients with UIAs as the multicenter external testing set (57 years [IQR, 50–63], 353 [66.0%] females). The IDL model achieved 97% accuracy in detecting UIAs and achieved a DSC of 0.90 (95%CI, 0.88–0.92) for UIA segmentation. Model-based morphologic measurements showed good agreement with reference standard measurements (all ICCs > 0.85). Within the multicenter external testing set, the IDL model also showed agreement with reference standard measurements (all ICCs > 0.80). Junior radiologists assisted by the IDL model showed significantly improved performance in measuring UIA size (ICC improved from 0.88 [0.80–0.92] to 0.96 [0.92–0.97], P < .001). Conclusion The developed integrated deep learning model using CTA data showed good performance in UIA detection, segmentation and morphologic measurement and may be used to assist less experienced radiologists in morphologic analysis of UIAs. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
toptop应助李茶嘚采纳,获得10
刚刚
haooo发布了新的文献求助10
刚刚
阿腾发布了新的文献求助10
1秒前
隐形曼青应助111111采纳,获得10
1秒前
chenyan完成签到,获得积分10
1秒前
2秒前
忆往昔完成签到,获得积分10
3秒前
领导范儿应助lili采纳,获得10
3秒前
4秒前
4秒前
假精灵儿发布了新的文献求助10
5秒前
李健应助心安采纳,获得30
6秒前
小蘑菇应助axin采纳,获得10
6秒前
汉堡包应助maliang666采纳,获得10
7秒前
feifan123完成签到 ,获得积分10
8秒前
WW发布了新的文献求助10
8秒前
瑜兮发布了新的文献求助10
10秒前
evefei完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
14秒前
开朗万天完成签到,获得积分10
14秒前
阿哈发布了新的文献求助10
15秒前
西海小甜豆完成签到,获得积分20
15秒前
赵teng发布了新的文献求助10
15秒前
吹气球的金毛完成签到,获得积分10
15秒前
16秒前
梦茵发布了新的文献求助10
16秒前
17秒前
ZUOWEI完成签到,获得积分10
17秒前
科研通AI2S应助开朗万天采纳,获得10
18秒前
充电宝应助luckype采纳,获得10
18秒前
19秒前
ZUOWEI发布了新的文献求助10
19秒前
maliang666发布了新的文献求助10
20秒前
lili发布了新的文献求助10
21秒前
deswin发布了新的文献求助10
22秒前
科研小白发布了新的文献求助10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194