Segmentation-based truncated-SVD for effective feature extraction in hyperspectral image classification

高光谱成像 模式识别(心理学) 人工智能 特征提取 计算机科学 特征(语言学) 分割 图像(数学) 萃取(化学) 图像分割 奇异值分解 化学 色谱法 语言学 哲学
作者
Md. Moshiur Rahman,Md. Rashedul Islam,Masud Ibn Afjal,Md. Abu Marjan,Md Palash Uddin,Md Mominul Islam
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-37
标识
DOI:10.1080/01431161.2024.2421934
摘要

Remote sensing hyperspectral images (HSIs) are rich sources of information about land cover captured across hundreds of narrow, contiguous spectral wavelength bands. However, using the entire original HSI for practical applications can lead to suboptimal classification accuracy. To address this, band reduction techniques, categorized as feature extraction and feature selection methods, are employed to enhance classification results. One commonly used feature extraction approach for HSIs is Principal Component Analysis (PCA). However, PCA may fall short of capturing the local and specific characteristics present in the HSI data. In this paper, we introduce two novel feature extraction methods: Segmented Truncated Singular Value Decomposition (STSVD) and Spectrally Segmented Truncated Singular Value Decomposition (SSTSVD) to improve classification performance. Segmentation is carried out based on highly correlated bands' segments and spectral bands' segments within the HSI data. Our study evaluates and compares these newly proposed methods against classical feature extraction methods, including PCA, Incremental PCA, Sparse-PCA, Kernel PCA, Segmented-PCA (SPCA), and Truncated Singular Value Decomposition (TSVD). We perform this analysis on three distinct HSI datasets, namely the Indian Pines HSI, the Pavia University HSI, and the Kennedy Space Center HSI, using per-pixel Support Vector Machine (SVM) and Random Forest (RF) classification. The experimental results demonstrate the superiority of our proposed methods for all three datasets. The best-performing feature extraction methods when classification is performed using an SVM classifier are STSVD3 (89.03%), SSTSVD2 (95.55%), and STSVD3 (97.74%) for the Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively. Similarly, for the RF classifier, the best-performing feature extraction methods are SSTSVD4 (88.98%), SSTSVD3 (96.04%), and SSTSVD4 (96.09%) for Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的之槐完成签到 ,获得积分10
刚刚
ESTHERDY完成签到 ,获得积分10
刚刚
yyyyyge发布了新的文献求助20
刚刚
不想干活应助美好斓采纳,获得10
刚刚
未晚完成签到,获得积分10
1秒前
邱梓铭完成签到,获得积分10
1秒前
2秒前
DD完成签到,获得积分10
2秒前
zmmm完成签到,获得积分10
3秒前
3秒前
陌上尘开发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
星辰大海应助warburg采纳,获得10
4秒前
LAYWL完成签到,获得积分10
4秒前
九月初五完成签到,获得积分10
5秒前
爆米花应助Anatee采纳,获得10
5秒前
5秒前
DXF关闭了DXF文献求助
6秒前
哇哈哈发布了新的文献求助10
6秒前
少冰丶七分糖完成签到,获得积分10
6秒前
归去来兮发布了新的文献求助10
7秒前
甜美平文发布了新的文献求助10
7秒前
hi小豆发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
赤恩完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
9秒前
酷炫book完成签到 ,获得积分10
9秒前
WQ完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743