Segmentation-based truncated-SVD for effective feature extraction in hyperspectral image classification

高光谱成像 模式识别(心理学) 人工智能 特征提取 计算机科学 特征(语言学) 分割 图像(数学) 萃取(化学) 图像分割 奇异值分解 化学 色谱法 哲学 语言学
作者
Md. Moshiur Rahman,Md. Rashedul Islam,Masud Ibn Afjal,Md. Abu Marjan,Md Palash Uddin,Md Mominul Islam
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-37
标识
DOI:10.1080/01431161.2024.2421934
摘要

Remote sensing hyperspectral images (HSIs) are rich sources of information about land cover captured across hundreds of narrow, contiguous spectral wavelength bands. However, using the entire original HSI for practical applications can lead to suboptimal classification accuracy. To address this, band reduction techniques, categorized as feature extraction and feature selection methods, are employed to enhance classification results. One commonly used feature extraction approach for HSIs is Principal Component Analysis (PCA). However, PCA may fall short of capturing the local and specific characteristics present in the HSI data. In this paper, we introduce two novel feature extraction methods: Segmented Truncated Singular Value Decomposition (STSVD) and Spectrally Segmented Truncated Singular Value Decomposition (SSTSVD) to improve classification performance. Segmentation is carried out based on highly correlated bands' segments and spectral bands' segments within the HSI data. Our study evaluates and compares these newly proposed methods against classical feature extraction methods, including PCA, Incremental PCA, Sparse-PCA, Kernel PCA, Segmented-PCA (SPCA), and Truncated Singular Value Decomposition (TSVD). We perform this analysis on three distinct HSI datasets, namely the Indian Pines HSI, the Pavia University HSI, and the Kennedy Space Center HSI, using per-pixel Support Vector Machine (SVM) and Random Forest (RF) classification. The experimental results demonstrate the superiority of our proposed methods for all three datasets. The best-performing feature extraction methods when classification is performed using an SVM classifier are STSVD3 (89.03%), SSTSVD2 (95.55%), and STSVD3 (97.74%) for the Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively. Similarly, for the RF classifier, the best-performing feature extraction methods are SSTSVD4 (88.98%), SSTSVD3 (96.04%), and SSTSVD4 (96.09%) for Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
clannad2424发布了新的文献求助10
刚刚
ZT完成签到,获得积分20
1秒前
1秒前
orixero应助Eva采纳,获得10
2秒前
程洁素发布了新的文献求助10
2秒前
2秒前
在水一方应助收手吧大哥采纳,获得30
2秒前
slama完成签到,获得积分10
2秒前
3秒前
下雨天完成签到,获得积分10
4秒前
nurzat完成签到,获得积分20
4秒前
Stanley完成签到,获得积分10
5秒前
nnnnnnxh完成签到,获得积分10
5秒前
大个应助weber采纳,获得10
5秒前
Makta发布了新的文献求助10
6秒前
我是老大应助ZT采纳,获得10
6秒前
风中的小丸子完成签到,获得积分10
6秒前
6秒前
dounai完成签到,获得积分10
6秒前
科研通AI2S应助薯条采纳,获得10
6秒前
6秒前
迷路荷花完成签到,获得积分20
7秒前
静然完成签到 ,获得积分10
7秒前
7秒前
bingsu108完成签到,获得积分10
7秒前
8秒前
爱笑的安梦完成签到,获得积分10
8秒前
百甲完成签到,获得积分10
9秒前
Ari_Kun完成签到 ,获得积分10
9秒前
9秒前
yrw关注了科研通微信公众号
9秒前
科研通AI6应助刘唐荣采纳,获得10
10秒前
Owen应助莽哥采纳,获得10
10秒前
单纯的黄蜂完成签到,获得积分10
10秒前
迷路荷花发布了新的文献求助20
11秒前
行毅文发布了新的文献求助10
11秒前
负责冰凡发布了新的文献求助10
11秒前
香蕉觅云应助烟酒僧采纳,获得10
12秒前
自信鞅发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406