已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Segmentation-based truncated-SVD for effective feature extraction in hyperspectral image classification

高光谱成像 模式识别(心理学) 人工智能 特征提取 计算机科学 特征(语言学) 分割 图像(数学) 萃取(化学) 图像分割 奇异值分解 化学 色谱法 哲学 语言学
作者
Md. Moshiur Rahman,Md. Rashedul Islam,Masud Ibn Afjal,Md. Abu Marjan,Md Palash Uddin,Md Mominul Islam
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-37
标识
DOI:10.1080/01431161.2024.2421934
摘要

Remote sensing hyperspectral images (HSIs) are rich sources of information about land cover captured across hundreds of narrow, contiguous spectral wavelength bands. However, using the entire original HSI for practical applications can lead to suboptimal classification accuracy. To address this, band reduction techniques, categorized as feature extraction and feature selection methods, are employed to enhance classification results. One commonly used feature extraction approach for HSIs is Principal Component Analysis (PCA). However, PCA may fall short of capturing the local and specific characteristics present in the HSI data. In this paper, we introduce two novel feature extraction methods: Segmented Truncated Singular Value Decomposition (STSVD) and Spectrally Segmented Truncated Singular Value Decomposition (SSTSVD) to improve classification performance. Segmentation is carried out based on highly correlated bands' segments and spectral bands' segments within the HSI data. Our study evaluates and compares these newly proposed methods against classical feature extraction methods, including PCA, Incremental PCA, Sparse-PCA, Kernel PCA, Segmented-PCA (SPCA), and Truncated Singular Value Decomposition (TSVD). We perform this analysis on three distinct HSI datasets, namely the Indian Pines HSI, the Pavia University HSI, and the Kennedy Space Center HSI, using per-pixel Support Vector Machine (SVM) and Random Forest (RF) classification. The experimental results demonstrate the superiority of our proposed methods for all three datasets. The best-performing feature extraction methods when classification is performed using an SVM classifier are STSVD3 (89.03%), SSTSVD2 (95.55%), and STSVD3 (97.74%) for the Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively. Similarly, for the RF classifier, the best-performing feature extraction methods are SSTSVD4 (88.98%), SSTSVD3 (96.04%), and SSTSVD4 (96.09%) for Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助凶狠的源智采纳,获得10
1秒前
3秒前
传奇3应助hygge采纳,获得10
5秒前
5秒前
6秒前
6秒前
caoyonggang发布了新的文献求助10
7秒前
馆长给开心的访卉的求助进行了留言
7秒前
puppy发布了新的文献求助10
9秒前
科研通AI6应助嘛吉采纳,获得10
11秒前
11秒前
科研通AI6应助优雅的帅哥采纳,获得10
11秒前
小小牛马完成签到 ,获得积分10
13秒前
13秒前
14秒前
陈小白完成签到,获得积分10
14秒前
15秒前
ltttaaaa发布了新的文献求助10
15秒前
陆旻发布了新的文献求助10
16秒前
小小鹅发布了新的文献求助10
16秒前
tangtang发布了新的文献求助10
16秒前
幸运的姜姜完成签到 ,获得积分10
16秒前
科研民工李完成签到,获得积分10
19秒前
21秒前
22秒前
小小牛马关注了科研通微信公众号
22秒前
24秒前
24秒前
执着无声完成签到 ,获得积分10
28秒前
28秒前
29秒前
隐形曼青应助ranj采纳,获得10
30秒前
科研通AI2S应助worrywar采纳,获得10
33秒前
明月清风发布了新的文献求助10
37秒前
幽默枫发布了新的文献求助10
37秒前
清爽的曼易完成签到,获得积分10
38秒前
39秒前
white完成签到 ,获得积分10
42秒前
42秒前
44秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522