Segmentation-based truncated-SVD for effective feature extraction in hyperspectral image classification

高光谱成像 模式识别(心理学) 人工智能 特征提取 计算机科学 特征(语言学) 分割 图像(数学) 萃取(化学) 图像分割 奇异值分解 化学 色谱法 哲学 语言学
作者
Md. Moshiur Rahman,Md. Rashedul Islam,Masud Ibn Afjal,Md. Abu Marjan,Md Palash Uddin,Md Mominul Islam
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:: 1-37
标识
DOI:10.1080/01431161.2024.2421934
摘要

Remote sensing hyperspectral images (HSIs) are rich sources of information about land cover captured across hundreds of narrow, contiguous spectral wavelength bands. However, using the entire original HSI for practical applications can lead to suboptimal classification accuracy. To address this, band reduction techniques, categorized as feature extraction and feature selection methods, are employed to enhance classification results. One commonly used feature extraction approach for HSIs is Principal Component Analysis (PCA). However, PCA may fall short of capturing the local and specific characteristics present in the HSI data. In this paper, we introduce two novel feature extraction methods: Segmented Truncated Singular Value Decomposition (STSVD) and Spectrally Segmented Truncated Singular Value Decomposition (SSTSVD) to improve classification performance. Segmentation is carried out based on highly correlated bands' segments and spectral bands' segments within the HSI data. Our study evaluates and compares these newly proposed methods against classical feature extraction methods, including PCA, Incremental PCA, Sparse-PCA, Kernel PCA, Segmented-PCA (SPCA), and Truncated Singular Value Decomposition (TSVD). We perform this analysis on three distinct HSI datasets, namely the Indian Pines HSI, the Pavia University HSI, and the Kennedy Space Center HSI, using per-pixel Support Vector Machine (SVM) and Random Forest (RF) classification. The experimental results demonstrate the superiority of our proposed methods for all three datasets. The best-performing feature extraction methods when classification is performed using an SVM classifier are STSVD3 (89.03%), SSTSVD2 (95.55%), and STSVD3 (97.74%) for the Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively. Similarly, for the RF classifier, the best-performing feature extraction methods are SSTSVD4 (88.98%), SSTSVD3 (96.04%), and SSTSVD4 (96.09%) for Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致忆丹完成签到,获得积分10
刚刚
1秒前
根根发布了新的文献求助10
1秒前
CodeCraft应助nick采纳,获得10
1秒前
2秒前
2秒前
Billy发布了新的文献求助10
3秒前
3秒前
4秒前
su完成签到,获得积分20
4秒前
好困发布了新的文献求助10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
ccm应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得20
6秒前
orixero应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
寒生发布了新的文献求助10
6秒前
7秒前
7秒前
杨沛发布了新的文献求助10
8秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593