Segmentation-based truncated-SVD for effective feature extraction in hyperspectral image classification

高光谱成像 模式识别(心理学) 人工智能 特征提取 计算机科学 特征(语言学) 分割 图像(数学) 萃取(化学) 图像分割 奇异值分解 化学 色谱法 哲学 语言学
作者
Md. Moshiur Rahman,Md. Rashedul Islam,Masud Ibn Afjal,Md. Abu Marjan,Md Palash Uddin,Md Mominul Islam
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-37
标识
DOI:10.1080/01431161.2024.2421934
摘要

Remote sensing hyperspectral images (HSIs) are rich sources of information about land cover captured across hundreds of narrow, contiguous spectral wavelength bands. However, using the entire original HSI for practical applications can lead to suboptimal classification accuracy. To address this, band reduction techniques, categorized as feature extraction and feature selection methods, are employed to enhance classification results. One commonly used feature extraction approach for HSIs is Principal Component Analysis (PCA). However, PCA may fall short of capturing the local and specific characteristics present in the HSI data. In this paper, we introduce two novel feature extraction methods: Segmented Truncated Singular Value Decomposition (STSVD) and Spectrally Segmented Truncated Singular Value Decomposition (SSTSVD) to improve classification performance. Segmentation is carried out based on highly correlated bands' segments and spectral bands' segments within the HSI data. Our study evaluates and compares these newly proposed methods against classical feature extraction methods, including PCA, Incremental PCA, Sparse-PCA, Kernel PCA, Segmented-PCA (SPCA), and Truncated Singular Value Decomposition (TSVD). We perform this analysis on three distinct HSI datasets, namely the Indian Pines HSI, the Pavia University HSI, and the Kennedy Space Center HSI, using per-pixel Support Vector Machine (SVM) and Random Forest (RF) classification. The experimental results demonstrate the superiority of our proposed methods for all three datasets. The best-performing feature extraction methods when classification is performed using an SVM classifier are STSVD3 (89.03%), SSTSVD2 (95.55%), and STSVD3 (97.74%) for the Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively. Similarly, for the RF classifier, the best-performing feature extraction methods are SSTSVD4 (88.98%), SSTSVD3 (96.04%), and SSTSVD4 (96.09%) for Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我还不困完成签到,获得积分10
1秒前
2秒前
熠熠完成签到,获得积分10
2秒前
小王完成签到,获得积分10
2秒前
2秒前
xiuwen完成签到,获得积分10
3秒前
Jasper应助合适台灯采纳,获得10
3秒前
岁月如酒完成签到,获得积分10
4秒前
LLL完成签到,获得积分10
4秒前
4秒前
温柔的蛋挞完成签到,获得积分10
4秒前
quanjiazhi给quanjiazhi的求助进行了留言
4秒前
5秒前
法鱿科完成签到,获得积分10
5秒前
虚幻盼晴完成签到,获得积分10
5秒前
5秒前
zxm完成签到,获得积分10
7秒前
7秒前
ZT发布了新的文献求助10
7秒前
yyk完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
宇文青寒发布了新的文献求助10
8秒前
yyy完成签到,获得积分10
9秒前
APS发布了新的文献求助10
9秒前
猪猪玉完成签到 ,获得积分10
9秒前
9秒前
syangZ完成签到,获得积分10
9秒前
10秒前
Siavy完成签到,获得积分10
10秒前
喜悦茗发布了新的文献求助10
10秒前
xzy998发布了新的文献求助10
11秒前
12秒前
金不换发布了新的文献求助10
12秒前
苹果完成签到,获得积分10
12秒前
12秒前
迅速向日葵应助Ww采纳,获得10
12秒前
12秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479