Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma

放射基因组学 胶质母细胞瘤 癌症研究 计算机科学 计算生物学 医学 生物 人工智能 无线电技术
作者
Abdul Basit Ahanger,Syed Wajid Aalam,Tariq Masoodi,Archit Shah,Meraj Alam Khan,Ajaz A. Bhat,Assif Assad,Muzafar A. Macha,Muzafar Rasool Bhat
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5131289/v1
摘要

Abstract Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. Despite standard therapies, the survival rate remains low, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in assessing GBM. Disruptions in various oncogenic signalling pathways, such as Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signalling, Phosphoinositide 3- Kinases (PI3Ks), tumour protein p53 (TP53), and Neurogenic locus notch homolog protein (NOTCH), contribute to the development of different tumour types, each exhibiting distinct morphological and phenotypic features that can be observed at a microscopic level. However, identifying genetic abnormalities for targeted therapy often requires invasive procedures, prompting exploration into non-invasive approaches like radiogenomics. This study explores the utility of radiogenomics and machine learning (ML) in predicting these oncogenic signaling pathways in GBM patients. Data from MRI scans and signaling pathways were collected, radiomic features were extracted, and ML models were trained and evaluated using cross-validation techniques. Our results showed a positive association between most signalling pathways and the radiomic features derived from MRI scans. The best models achieved high AUC scores, namely 0.7 for RTK-RAS, 0.8 for PI3K, 0.75 for TP53, and 0.4 for NOTCH, and therefore demonstrated the potential of ML models in accurately predicting oncogenic signaling pathways from radiomic features, thereby informing personalized therapeutic approaches and improving patient outcomes. We present a novel approach for the non-invasive prediction of deregulation in oncogenic signaling pathways in glioblastoma (GBM) by integrating radiogenomic data with machine learning (ML) models. This research contributes to the advancement of precision medicine in GBM management, highlighting the importance of integrating radiomics with genomic data to better understand tumor behavior and treatment response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
漂亮的人生完成签到,获得积分10
刚刚
科目三应助Wwbdienbd采纳,获得10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
彭于晏应助yeye采纳,获得20
3秒前
一线西风发布了新的文献求助10
3秒前
文昊发布了新的文献求助10
3秒前
3秒前
席河木鱼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
怕孤单的听寒完成签到,获得积分10
5秒前
5秒前
赛特特特完成签到,获得积分10
5秒前
gougou发布了新的文献求助10
5秒前
萌&发布了新的文献求助10
6秒前
Akim应助野生菜狗采纳,获得10
6秒前
6秒前
嘟嘟图图发布了新的文献求助20
7秒前
rushfuture发布了新的文献求助10
7秒前
22222发布了新的文献求助10
8秒前
NexusExplorer应助wjp采纳,获得10
8秒前
自觉断秋完成签到,获得积分10
8秒前
9秒前
iiing发布了新的文献求助10
10秒前
11秒前
豌豆射手完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
深情安青应助汉堡采纳,获得10
12秒前
12秒前
斯文败类应助棋士采纳,获得10
12秒前
映之发布了新的文献求助10
13秒前
大模型应助猪米妮采纳,获得10
13秒前
momo完成签到,获得积分10
14秒前
闲庭信步完成签到,获得积分10
14秒前
桐桐应助Dylan采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712541
求助须知:如何正确求助?哪些是违规求助? 5210657
关于积分的说明 15267838
捐赠科研通 4864451
什么是DOI,文献DOI怎么找? 2611394
邀请新用户注册赠送积分活动 1561695
关于科研通互助平台的介绍 1518970