亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma

放射基因组学 胶质母细胞瘤 癌症研究 计算机科学 计算生物学 医学 生物 人工智能 无线电技术
作者
Abdul Basit Ahanger,Syed Wajid Aalam,Tariq Masoodi,Archit Shah,Meraj Alam Khan,Ajaz A. Bhat,Assif Assad,Muzafar A. Macha,Muzafar Rasool Bhat
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5131289/v1
摘要

Abstract Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. Despite standard therapies, the survival rate remains low, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in assessing GBM. Disruptions in various oncogenic signalling pathways, such as Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signalling, Phosphoinositide 3- Kinases (PI3Ks), tumour protein p53 (TP53), and Neurogenic locus notch homolog protein (NOTCH), contribute to the development of different tumour types, each exhibiting distinct morphological and phenotypic features that can be observed at a microscopic level. However, identifying genetic abnormalities for targeted therapy often requires invasive procedures, prompting exploration into non-invasive approaches like radiogenomics. This study explores the utility of radiogenomics and machine learning (ML) in predicting these oncogenic signaling pathways in GBM patients. Data from MRI scans and signaling pathways were collected, radiomic features were extracted, and ML models were trained and evaluated using cross-validation techniques. Our results showed a positive association between most signalling pathways and the radiomic features derived from MRI scans. The best models achieved high AUC scores, namely 0.7 for RTK-RAS, 0.8 for PI3K, 0.75 for TP53, and 0.4 for NOTCH, and therefore demonstrated the potential of ML models in accurately predicting oncogenic signaling pathways from radiomic features, thereby informing personalized therapeutic approaches and improving patient outcomes. We present a novel approach for the non-invasive prediction of deregulation in oncogenic signaling pathways in glioblastoma (GBM) by integrating radiogenomic data with machine learning (ML) models. This research contributes to the advancement of precision medicine in GBM management, highlighting the importance of integrating radiomics with genomic data to better understand tumor behavior and treatment response.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助黄志伟采纳,获得10
8秒前
科研通AI6.2应助黄志伟采纳,获得10
8秒前
KYT完成签到 ,获得积分10
1分钟前
1分钟前
庄严发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
FashionBoy应助傲娇的曼香采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
勤恳八宝粥完成签到 ,获得积分10
2分钟前
傲娇的曼香完成签到,获得积分10
2分钟前
Zzoevy完成签到 ,获得积分10
3分钟前
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
Crisp完成签到 ,获得积分10
4分钟前
6分钟前
永远发布了新的文献求助10
6分钟前
玛琳卡迪马完成签到 ,获得积分10
7分钟前
萨尔莫斯完成签到,获得积分10
7分钟前
zht完成签到,获得积分10
8分钟前
kevin完成签到 ,获得积分10
8分钟前
9分钟前
hwx发布了新的文献求助30
9分钟前
9分钟前
江小姜发布了新的文献求助10
10分钟前
江小姜完成签到,获得积分20
10分钟前
貔貅完成签到 ,获得积分10
10分钟前
赘婿应助杜琦采纳,获得10
11分钟前
11分钟前
11分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845355
求助须知:如何正确求助?哪些是违规求助? 6201719
关于积分的说明 15616386
捐赠科研通 4962184
什么是DOI,文献DOI怎么找? 2675323
邀请新用户注册赠送积分活动 1620073
关于科研通互助平台的介绍 1575372