Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma

放射基因组学 胶质母细胞瘤 癌症研究 计算机科学 计算生物学 医学 生物 人工智能 无线电技术
作者
Abdul Basit Ahanger,Syed Wajid Aalam,Tariq Masoodi,Archit Shah,Meraj Alam Khan,Ajaz A. Bhat,Assif Assad,Muzafar A. Macha,Muzafar Rasool Bhat
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5131289/v1
摘要

Abstract Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. Despite standard therapies, the survival rate remains low, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in assessing GBM. Disruptions in various oncogenic signalling pathways, such as Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signalling, Phosphoinositide 3- Kinases (PI3Ks), tumour protein p53 (TP53), and Neurogenic locus notch homolog protein (NOTCH), contribute to the development of different tumour types, each exhibiting distinct morphological and phenotypic features that can be observed at a microscopic level. However, identifying genetic abnormalities for targeted therapy often requires invasive procedures, prompting exploration into non-invasive approaches like radiogenomics. This study explores the utility of radiogenomics and machine learning (ML) in predicting these oncogenic signaling pathways in GBM patients. Data from MRI scans and signaling pathways were collected, radiomic features were extracted, and ML models were trained and evaluated using cross-validation techniques. Our results showed a positive association between most signalling pathways and the radiomic features derived from MRI scans. The best models achieved high AUC scores, namely 0.7 for RTK-RAS, 0.8 for PI3K, 0.75 for TP53, and 0.4 for NOTCH, and therefore demonstrated the potential of ML models in accurately predicting oncogenic signaling pathways from radiomic features, thereby informing personalized therapeutic approaches and improving patient outcomes. We present a novel approach for the non-invasive prediction of deregulation in oncogenic signaling pathways in glioblastoma (GBM) by integrating radiogenomic data with machine learning (ML) models. This research contributes to the advancement of precision medicine in GBM management, highlighting the importance of integrating radiomics with genomic data to better understand tumor behavior and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭雯卓完成签到,获得积分10
1秒前
虞子完成签到,获得积分10
1秒前
1秒前
Jasper应助还单身的寒云采纳,获得10
1秒前
阿凡完成签到,获得积分10
2秒前
阿杨给阿杨的求助进行了留言
2秒前
2秒前
善良苞络发布了新的文献求助20
2秒前
魏艳秋完成签到,获得积分10
2秒前
伽古拉40k完成签到,获得积分10
3秒前
哈哈哈哈哈完成签到,获得积分10
3秒前
3秒前
4秒前
duduying完成签到,获得积分10
5秒前
科研通AI6应助Clovis33采纳,获得10
5秒前
领导范儿应助Clovis33采纳,获得10
5秒前
嘻嘻发布了新的文献求助30
6秒前
浮游应助少艾采纳,获得10
7秒前
慕青应助少艾采纳,获得10
7秒前
科研通AI5应助mio采纳,获得30
8秒前
8秒前
还单身的寒云完成签到,获得积分10
9秒前
zz完成签到,获得积分10
9秒前
meng完成签到 ,获得积分10
10秒前
11秒前
11秒前
ZHEN完成签到,获得积分20
11秒前
希望天下0贩的0应助Dorren采纳,获得10
11秒前
火星上博涛完成签到,获得积分10
12秒前
Peng完成签到 ,获得积分10
13秒前
14秒前
烂漫的涫完成签到 ,获得积分10
14秒前
flystone发布了新的文献求助10
15秒前
LWJ发布了新的文献求助10
15秒前
马小强完成签到,获得积分10
17秒前
科研通AI6应助曹骏轩采纳,获得10
18秒前
18秒前
浮游应助ZHEN采纳,获得10
18秒前
自然月饼完成签到,获得积分20
19秒前
烂漫芷雪完成签到,获得积分10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652