Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma

放射基因组学 胶质母细胞瘤 癌症研究 计算机科学 计算生物学 医学 生物 人工智能 无线电技术
作者
Abdul Basit Ahanger,Syed Wajid Aalam,Tariq Masoodi,Archit Shah,Meraj Alam Khan,Ajaz A. Bhat,Assif Assad,Muzafar A. Macha,Muzafar Rasool Bhat
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5131289/v1
摘要

Abstract Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. Despite standard therapies, the survival rate remains low, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in assessing GBM. Disruptions in various oncogenic signalling pathways, such as Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signalling, Phosphoinositide 3- Kinases (PI3Ks), tumour protein p53 (TP53), and Neurogenic locus notch homolog protein (NOTCH), contribute to the development of different tumour types, each exhibiting distinct morphological and phenotypic features that can be observed at a microscopic level. However, identifying genetic abnormalities for targeted therapy often requires invasive procedures, prompting exploration into non-invasive approaches like radiogenomics. This study explores the utility of radiogenomics and machine learning (ML) in predicting these oncogenic signaling pathways in GBM patients. Data from MRI scans and signaling pathways were collected, radiomic features were extracted, and ML models were trained and evaluated using cross-validation techniques. Our results showed a positive association between most signalling pathways and the radiomic features derived from MRI scans. The best models achieved high AUC scores, namely 0.7 for RTK-RAS, 0.8 for PI3K, 0.75 for TP53, and 0.4 for NOTCH, and therefore demonstrated the potential of ML models in accurately predicting oncogenic signaling pathways from radiomic features, thereby informing personalized therapeutic approaches and improving patient outcomes. We present a novel approach for the non-invasive prediction of deregulation in oncogenic signaling pathways in glioblastoma (GBM) by integrating radiogenomic data with machine learning (ML) models. This research contributes to the advancement of precision medicine in GBM management, highlighting the importance of integrating radiomics with genomic data to better understand tumor behavior and treatment response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Moro发布了新的文献求助10
1秒前
彭于晏应助成就雨筠采纳,获得10
1秒前
wanci应助左白易采纳,获得10
1秒前
1秒前
平常亦凝发布了新的文献求助10
1秒前
8R60d8应助循循采纳,获得10
1秒前
1秒前
小白完成签到 ,获得积分10
2秒前
积极上进的小润完成签到,获得积分10
2秒前
今后应助小笼包采纳,获得10
3秒前
3秒前
3秒前
3秒前
吴123完成签到,获得积分10
4秒前
坚强的小蘑菇完成签到,获得积分20
4秒前
xjcy应助kexing采纳,获得10
4秒前
弥深发布了新的文献求助10
4秒前
万能图书馆应助宁洁元采纳,获得10
4秒前
4秒前
miaozhuolin发布了新的文献求助10
4秒前
wsg发布了新的文献求助10
5秒前
王永文发布了新的文献求助10
5秒前
6秒前
manman发布了新的文献求助10
6秒前
Billy发布了新的文献求助20
6秒前
tcx完成签到,获得积分10
6秒前
7秒前
重要松鼠发布了新的文献求助10
7秒前
CipherSage应助Hades采纳,获得10
7秒前
乐乐应助贝贝采纳,获得10
7秒前
8秒前
吴123发布了新的文献求助10
8秒前
8秒前
难过忆山发布了新的文献求助20
8秒前
慕青应助坚强的小蘑菇采纳,获得50
8秒前
今后应助连难胜采纳,获得10
9秒前
小赵吉星高照完成签到,获得积分10
10秒前
10秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217557
求助须知:如何正确求助?哪些是违规求助? 2866772
关于积分的说明 8153476
捐赠科研通 2533694
什么是DOI,文献DOI怎么找? 1366407
科研通“疑难数据库(出版商)”最低求助积分说明 644764
邀请新用户注册赠送积分活动 617731