已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma

放射基因组学 胶质母细胞瘤 癌症研究 计算机科学 计算生物学 医学 生物 人工智能 无线电技术
作者
Abdul Basit Ahanger,Syed Wajid Aalam,Tariq Masoodi,Archit Shah,Meraj Alam Khan,Ajaz A. Bhat,Assif Assad,Muzafar A. Macha,Muzafar Rasool Bhat
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5131289/v1
摘要

Abstract Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. Despite standard therapies, the survival rate remains low, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in assessing GBM. Disruptions in various oncogenic signalling pathways, such as Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signalling, Phosphoinositide 3- Kinases (PI3Ks), tumour protein p53 (TP53), and Neurogenic locus notch homolog protein (NOTCH), contribute to the development of different tumour types, each exhibiting distinct morphological and phenotypic features that can be observed at a microscopic level. However, identifying genetic abnormalities for targeted therapy often requires invasive procedures, prompting exploration into non-invasive approaches like radiogenomics. This study explores the utility of radiogenomics and machine learning (ML) in predicting these oncogenic signaling pathways in GBM patients. Data from MRI scans and signaling pathways were collected, radiomic features were extracted, and ML models were trained and evaluated using cross-validation techniques. Our results showed a positive association between most signalling pathways and the radiomic features derived from MRI scans. The best models achieved high AUC scores, namely 0.7 for RTK-RAS, 0.8 for PI3K, 0.75 for TP53, and 0.4 for NOTCH, and therefore demonstrated the potential of ML models in accurately predicting oncogenic signaling pathways from radiomic features, thereby informing personalized therapeutic approaches and improving patient outcomes. We present a novel approach for the non-invasive prediction of deregulation in oncogenic signaling pathways in glioblastoma (GBM) by integrating radiogenomic data with machine learning (ML) models. This research contributes to the advancement of precision medicine in GBM management, highlighting the importance of integrating radiomics with genomic data to better understand tumor behavior and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandy应助徐小采纳,获得40
2秒前
汉堡包应助徐小采纳,获得10
2秒前
Singularity应助韩凡采纳,获得10
2秒前
郭京京完成签到 ,获得积分10
3秒前
4秒前
8秒前
医学僧丿道阻且长完成签到,获得积分10
8秒前
戴哈哈发布了新的文献求助10
11秒前
11秒前
orixero应助戴哈哈采纳,获得10
15秒前
15秒前
SGOM完成签到,获得积分10
15秒前
萤lueluelue发布了新的文献求助10
19秒前
20秒前
你求我一下完成签到,获得积分10
21秒前
21秒前
麻辣鱼头发布了新的文献求助10
25秒前
依依完成签到 ,获得积分10
27秒前
乐乐应助Fury采纳,获得10
28秒前
29秒前
哈哈完成签到 ,获得积分10
30秒前
mumufan完成签到,获得积分10
31秒前
34秒前
38秒前
大白完成签到 ,获得积分10
38秒前
千纸鹤完成签到 ,获得积分10
38秒前
风清扬发布了新的文献求助10
39秒前
聪慧不二完成签到 ,获得积分10
41秒前
joanna完成签到,获得积分10
41秒前
42秒前
Jes关闭了Jes文献求助
44秒前
一卷钢丝球完成签到 ,获得积分10
45秒前
炸鸡完成签到 ,获得积分10
46秒前
kalisu24发布了新的文献求助10
50秒前
xutong de完成签到,获得积分10
54秒前
58秒前
科研通AI2S应助夺命倩倩儿采纳,获得10
1分钟前
1分钟前
1分钟前
pxb完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234