Credibility-driven rumor spreader and debunker co-evolutionary mechanisms for rumor propagation

谣言 可靠性 计算机科学 哲学 认识论 政治学 公共关系
作者
Fuzhong Nian,Yi Jia,Zhen Wang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (12): 125271-125271
标识
DOI:10.1088/1402-4896/ad9067
摘要

Abstract Rumor-propagation models have been an active research topic, while few methods consider the dynamic mutual transformation of the rumor spreaders and debunkers during the rumor propagation. To address the problem, we consider the possibility of co-evolution between spreaders and debunkers due to their suspicion of the message’s authenticity. Specifically, we define three dyadic rules that specify the transformation of ignorants to spreaders, ignorants to debunkers, and the mutual transformation between spreaders and debunkers in the competition of spreading-debunking during rumor propagation. Utilizing the proposed dyadic rule, we establish a new SI r I d rumor propagation model (susceptible ignorants ( S ), rumor spreaders ( I r ), rumor debunkers ( I d )). Additionally, we introduce credibility as an indicating factor for the mutual transformation between spreaders and debunkers, and the credibility itself is updated according to the individual influence of each node, the local changes of neighboring spreader and debunker nodes, and the global changes of spreader and debunker nodes in the entire network. We first evaluate the proposed SI r I d model with simulation experiments in three typical networks, namely, Watts-Strogatz (WS), Erdős-Rényi (ER), and Barabasi-Albert (BA) networks. The results show that the proposed SI r I d model is strongly adaptable to these networks. We then conduct a series of parameter and ablation studies to analyze the proposed model theoretically and experimentally. Finally, we evaluate the proposed SI r I d model with multiple real retweet datasets collected from Weibo and Twitter to verify the generality and adaptability of the proposed model. The results show that our SI r I d can mimic rumor propagation in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN发布了新的文献求助10
刚刚
向晚完成签到 ,获得积分10
1秒前
1秒前
打打应助JBY采纳,获得10
2秒前
香蕉觅云应助lvxinda采纳,获得10
2秒前
2秒前
Zzz完成签到,获得积分10
3秒前
HmH完成签到,获得积分10
3秒前
佳佳完成签到,获得积分10
3秒前
情怀应助MoonByMoon采纳,获得10
3秒前
123发布了新的文献求助30
3秒前
3秒前
4秒前
ddddansu完成签到,获得积分10
4秒前
科研通AI5应助美丽秋蝶采纳,获得10
4秒前
沈沈完成签到,获得积分10
5秒前
jing发布了新的文献求助10
5秒前
wxr完成签到 ,获得积分10
5秒前
5秒前
7秒前
一棵完成签到 ,获得积分10
7秒前
qiao完成签到,获得积分10
7秒前
7秒前
汉堡包应助Pendulium采纳,获得10
8秒前
hdbys完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
周轩完成签到,获得积分10
10秒前
liusj完成签到,获得积分10
10秒前
ss发布了新的文献求助10
10秒前
Miyo完成签到,获得积分10
11秒前
11秒前
11秒前
高贵的帽子完成签到 ,获得积分10
11秒前
AN完成签到,获得积分10
11秒前
Catalysis123发布了新的文献求助10
12秒前
12秒前
开心的人杰完成签到,获得积分10
13秒前
科目三应助儒雅大象采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170