Integration of PSPU-Net GI Neural Network with Gravity Data for Enhanced 3D Basement Relief Estimation

估计 地下室 人工神经网络 地质学 网(多面体) 计算机科学 大地测量学 人工智能 数学 地理 考古 工程类 几何学 系统工程
作者
X. Liu,Meixia Geng,Jiajia Sun,Mohammed Y. Ali,Sultan Abughazal,Kai Lin
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-66
标识
DOI:10.1190/geo2024-0150.1
摘要

Estimating the sediment-basement interface is critical to understanding basin evolution and its applications in energy, water resources, and seismic risk management. We develop PSPU-Net GI (gravity inversion) network, a deep-learning approach combining Pyramid Scene Parsing Network and U-Net, for gravity data to recover the sediment-basement interface. Training and validation involve smoothed basement models generated from random rectangles followed by filtering. We also incorporate uplifted basements and intrusions to enhance performance in complex geological contexts. Numerical results for synthetic models demonstrate PSPU-Net GI's effective recovery of sediment-basement interface relief. To improve field data predictions, we implement transfer learning and normalization strategies. Transfer learning constructs a small number of additional basement models based on the site-specific prior information and fine-tunes the neural network trained on the original general models. Normalization strategy provides a convenient way of harnessing depth information from seismic and wells. We apply our framework to the gravity data from the western margin of the Pannonian Basin (Austria). The predictions from the three implementations mentioned above (baseline PSPU-Net GI, PSPU-Net GI + transfer learning, PSPU-Net GI + normalization) successfully characterize the basement relief, and are consistent with results in previous publications. Compared with the prediction from baseline PSPU-Net GI, the prediction accuracies obtained from PSPU-Net GI implementations with the additional transfer learning and normalization components are notably improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chu发布了新的文献求助10
1秒前
万能图书馆应助Yxian采纳,获得10
1秒前
1秒前
sinlar发布了新的文献求助10
1秒前
着急的莫言完成签到,获得积分10
1秒前
付滋滋完成签到 ,获得积分10
1秒前
1秒前
3秒前
勤奋以山发布了新的文献求助30
3秒前
fan完成签到,获得积分10
3秒前
seven_yao完成签到,获得积分10
3秒前
Rixxed发布了新的文献求助10
4秒前
脑洞疼应助山茶采纳,获得10
4秒前
枯藤应助科研通管家采纳,获得10
4秒前
toutou应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
枯藤应助科研通管家采纳,获得10
4秒前
4秒前
toutou应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助岳岳岳采纳,获得10
4秒前
4秒前
toutou应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Cloud发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207