Integration of PSPU-Net GI Neural Network with Gravity Data for Enhanced 3D Basement Relief Estimation

估计 地下室 人工神经网络 地质学 网(多面体) 计算机科学 大地测量学 人工智能 数学 地理 考古 工程类 几何学 系统工程
作者
X. Liu,Meixia Geng,Jiajia Sun,Mohammed Y. Ali,Sultan Abughazal,Kai Lin
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-66
标识
DOI:10.1190/geo2024-0150.1
摘要

Estimating the sediment-basement interface is critical to understanding basin evolution and its applications in energy, water resources, and seismic risk management. We develop PSPU-Net GI (gravity inversion) network, a deep-learning approach combining Pyramid Scene Parsing Network and U-Net, for gravity data to recover the sediment-basement interface. Training and validation involve smoothed basement models generated from random rectangles followed by filtering. We also incorporate uplifted basements and intrusions to enhance performance in complex geological contexts. Numerical results for synthetic models demonstrate PSPU-Net GI's effective recovery of sediment-basement interface relief. To improve field data predictions, we implement transfer learning and normalization strategies. Transfer learning constructs a small number of additional basement models based on the site-specific prior information and fine-tunes the neural network trained on the original general models. Normalization strategy provides a convenient way of harnessing depth information from seismic and wells. We apply our framework to the gravity data from the western margin of the Pannonian Basin (Austria). The predictions from the three implementations mentioned above (baseline PSPU-Net GI, PSPU-Net GI + transfer learning, PSPU-Net GI + normalization) successfully characterize the basement relief, and are consistent with results in previous publications. Compared with the prediction from baseline PSPU-Net GI, the prediction accuracies obtained from PSPU-Net GI implementations with the additional transfer learning and normalization components are notably improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘教授发布了新的文献求助10
2秒前
2秒前
Zx_1993应助wackykao采纳,获得10
3秒前
小雕完成签到,获得积分10
3秒前
3秒前
Bowen发布了新的文献求助10
3秒前
3秒前
勤奋的琳完成签到,获得积分20
4秒前
科研通AI6应助三七采纳,获得10
4秒前
5秒前
5秒前
zzy完成签到 ,获得积分10
5秒前
小柒发布了新的文献求助10
5秒前
xinxin发布了新的文献求助10
6秒前
勤奋的琳发布了新的文献求助10
6秒前
黎黎学化学完成签到 ,获得积分10
7秒前
JamesPei应助刘一一采纳,获得10
7秒前
8秒前
8秒前
Vonnie发布了新的文献求助10
9秒前
大大发布了新的文献求助10
9秒前
怪咖关注了科研通微信公众号
9秒前
路遥知马力完成签到,获得积分10
11秒前
12秒前
林子发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
香蕉觅云应助海比天蓝采纳,获得10
13秒前
充电宝应助海比天蓝采纳,获得10
14秒前
14秒前
yfy_fairy发布了新的文献求助10
14秒前
风时因絮发布了新的文献求助10
16秒前
16秒前
xixi完成签到 ,获得积分10
17秒前
17秒前
17秒前
zhou完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175