估计
地下室
人工神经网络
地质学
网(多面体)
计算机科学
大地测量学
人工智能
数学
地理
考古
工程类
几何学
系统工程
作者
X. Liu,Meixia Geng,Jiajia Sun,Mohammed Y. Ali,S. Abughazal,Kai Lin
出处
期刊:Geophysics
[Society of Exploration Geophysicists]
日期:2024-11-19
卷期号:: 1-66
标识
DOI:10.1190/geo2024-0150.1
摘要
Estimating the sediment-basement interface is critical to understanding basin evolution and its applications in energy, water resources, and seismic risk management. We develop PSPU-Net GI (gravity inversion) network, a deep-learning approach combining Pyramid Scene Parsing Network and U-Net, for gravity data to recover the sediment-basement interface. Training and validation involve smoothed basement models generated from random rectangles followed by filtering. We also incorporate uplifted basements and intrusions to enhance performance in complex geological contexts. Numerical results for synthetic models demonstrate PSPU-Net GI's effective recovery of sediment-basement interface relief. To improve field data predictions, we implement transfer learning and normalization strategies. Transfer learning constructs a small number of additional basement models based on the site-specific prior information and fine-tunes the neural network trained on the original general models. Normalization strategy provides a convenient way of harnessing depth information from seismic and wells. We apply our framework to the gravity data from the western margin of the Pannonian Basin (Austria). The predictions from the three implementations mentioned above (baseline PSPU-Net GI, PSPU-Net GI + transfer learning, PSPU-Net GI + normalization) successfully characterize the basement relief, and are consistent with results in previous publications. Compared with the prediction from baseline PSPU-Net GI, the prediction accuracies obtained from PSPU-Net GI implementations with the additional transfer learning and normalization components are notably improved.
科研通智能强力驱动
Strongly Powered by AbleSci AI