Three-point adaptive preview steady-state compensation driver model based on articulated heavy vehicle

控制器(灌溉) 控制理论(社会学) 补偿(心理学) 点(几何) 弹道 稳态(化学) 计算机科学 拖车 模拟 工程类 汽车工程 控制(管理) 人工智能 物理 天文 几何学 化学 物理化学 生物 农学 数学 心理学 精神分析
作者
Zhaowen Deng,Tianhao He,Wei Gao,Youqun Zhao,Yufeng Chen,Baohua Wang
标识
DOI:10.1177/14644193241277550
摘要

This article proposes a three-point adaptive preview steady-state compensation driver model based on articulated heavy vehicles (AHVs). Although AHVs have extremely high road transportation efficiency, they have poor driving stability and high accident risk during high-speed transportation due to their large weight, high center of mass and multi-body characteristics. However, there are few studies on intelligent driving control of AHVs. In order to improve the active safety performance of AHVs, a three-point adaptive preview driver model is designed in this article. Based on the driver model, a sliding mode steady-state compensation controller is added. The three-point adaptive preview driver is different from other driver models. Its characteristic is that the preview distance can be automatically adjusted according to the vehicle speed and road curvature. A driver model with three-point preview weighted deviation, preview time, current vehicle speed and vehicle state as input and front wheel angle as output is established. Considering the trailer state, the front wheel angle is compensated and corrected by sliding mode steady-state compensation controller. The simulation results show that the model can reasonably judge the relationship between the target path and the vehicle position, adapt to the dynamic adjustment mechanism of the preview distance, and has good tracking accuracy. The front wheel compensation angle provided by the sliding mode controller under high speed and extreme conditions can ensure that the AHVs can track the target trajectory while maintaining driving stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wiki完成签到,获得积分20
1秒前
StevenZhao完成签到,获得积分0
1秒前
刘新宇发布了新的文献求助10
1秒前
SYLH应助Hammerdai采纳,获得10
2秒前
3秒前
燕天与发布了新的文献求助10
3秒前
Promise完成签到 ,获得积分10
3秒前
wiki发布了新的文献求助10
3秒前
4秒前
zsh完成签到,获得积分10
4秒前
huntme完成签到,获得积分10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
景XN发布了新的文献求助10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得30
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
7秒前
chunjuan应助科研通管家采纳,获得20
7秒前
yahaha应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
chunjuan应助科研通管家采纳,获得20
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
李健应助DCH采纳,获得10
8秒前
852应助阿晴采纳,获得10
8秒前
煤炭不甜发布了新的文献求助10
9秒前
9秒前
鲤鱼茗茗完成签到,获得积分10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731302
求助须知:如何正确求助?哪些是违规求助? 3275712
关于积分的说明 9993151
捐赠科研通 2991222
什么是DOI,文献DOI怎么找? 1641445
邀请新用户注册赠送积分活动 779821
科研通“疑难数据库(出版商)”最低求助积分说明 748365