化学
催化作用
光催化
氨硼烷
制氢
石墨氮化碳
光化学
电子缺陷
异核分子
组合化学
分子
结晶学
有机化学
作者
Aonan Zhu,Yutao Cao,Ning Zhao,Yongcheng Jin,Yonglong Li,Ling Yang,Cancan Zhang,Yangxuan Gao,Zhao Zhang,Yuying Zhang,Wei Xie
摘要
Dual-atom catalysts (DACs) have garnered significant interest due to their high atom utilization and synergistic catalysis. However, developing a precise synthetic method for DACs and comprehending the underlying catalytic mechanisms remain challenging. In this study, we employ a photoinduced anchoring strategy to precisely synthesize PtCo DAC on graphitic carbon nitride (CN). A Co atom was anchored on CN through the lone-pair electrons of nitrogen. Upon light irradiation, photoelectrons gathering at the Co site can anchor Pt metal ions nearby, accurately facilitating the formation of heteronuclear DACs. The PtCo DAC demonstrates a remarkably high H2 generation rate from ammonia borane (AB) hydrolysis, with a TOF of 3130 molH2 molPt–1 min–1 at 298 K. This TOF value is approximately 3.2 times higher than that of the Pt single-atom photocatalyst. Importantly, the PtCo DAC shows good stability, achieving a turnover number as high as 307,982 molH2 molPt–1 at room temperature. The experimental and theoretical calculation results demonstrate that the synergy between Pt and Co optimizes the adsorption energy of AB and H2 molecules while reducing the energy barrier of the rate-determining step, thus accelerating H2 evolution from AB hydrolysis. Additionally, the introduced Co species stabilize the Pt active sites by enhancing the stability of the Pt–N bond, preventing leaching, aggregation, and deactivation. The excellent catalytic performance, good stability, and low cost of the catalysts in this work open new prospects for their practical application in hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI