Hybrid Oxidization of Ethylene Glycol on Defective Ag‐PtPd Electrocatalyst Beyond 3000 h Stability at an Industrial‐Scale Current Density

电催化剂 材料科学 乙二醇 法拉第效率 化学工程 电化学 催化作用 纳米技术 电极 有机化学 化学 物理化学 工程类
作者
Ying Yang,Xuebo Cao,Lin Huang,Q. Li,Li Gu,Yan Zheng,Mengli Li,Rui Cheng,Zhufeng Lu,Ai‐Jun Wang,Wenchao Yang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (14) 被引量:8
标识
DOI:10.1002/adfm.202418588
摘要

Abstract Electrochemical oxidization of crude ethylene glycol (EG) to fine chemicals driven by sustainable energy is an eco‐friendly solution to the upcycling of end‐of‐life polyethylene terephthalate (PET) wastes. Here, pseudo Ag x ‐Pt y Pd z core–shell electrocatalyst capable of hybrid oxidation of EG to formate (FA) is designed and synthesized. The trimetallic system consists of Ag nanowire and ultrathin PtPd alloy skin with defects, such as holes and grooves. The defects expose the Ag core to the surroundings and convert Ag 0 to Ag 2+ active species at appropriate potential (> 1.2 V vs RHE). Thus, hybrid EG oxidization reaction is realized on the Ag x ‐Pt y Pd z electrocatalyst, where PtPd skin catalyzes EG oxidization through conventional Faradaic electrode process owing to inherent activities of Pt and Pd, while Ag 2+ serves as auxiliar oxidant to oxidize EG/intermediates (non‐Faradaic reaction). Such a hybrid oxidization strategy reinforces the removal of adsorbates on Ag x ‐Pt y Pd z electrocatalyst and refresh the active sites timely. Eventually, ultrahigh specific activity (24.45 A mg −1 PtPd ) and long‐term stability (> 3000 h at current density ≥ 400 mA cm −2 ) are delivered by the system. The finding of Ag 2+ ‐enhanced alcohol oxidization reactions introduces a new paradigm for designing high‐performance electrocatalysts for energy and environmental applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助牛溪媛采纳,获得10
刚刚
刚刚
小蘑菇应助cruise采纳,获得10
刚刚
liu完成签到,获得积分10
刚刚
2秒前
2秒前
赘婿应助勒恩梁采纳,获得10
3秒前
坦率的语芙完成签到,获得积分10
3秒前
脑洞疼应助longer采纳,获得10
3秒前
caizhizhao完成签到,获得积分20
4秒前
cach完成签到,获得积分0
4秒前
4秒前
ssskong完成签到,获得积分10
5秒前
Xu完成签到,获得积分10
6秒前
明天发布了新的文献求助20
6秒前
CipherSage应助xvan采纳,获得10
6秒前
7秒前
fksci发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
阿庆完成签到,获得积分10
9秒前
Criminology34应助落后成仁采纳,获得10
9秒前
LMY完成签到,获得积分10
9秒前
11秒前
orixero应助wwwweer采纳,获得10
11秒前
12秒前
13秒前
诺贝尔候选人完成签到 ,获得积分10
13秒前
Youlu发布了新的文献求助10
14秒前
吃瓜完成签到,获得积分10
14秒前
14秒前
Mmmm发布了新的文献求助10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
tiptip应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172