SegAnyPath: A Foundation Model for Multi-resolution Stain-variant and Multi-task Pathology Image Segmentation

人工智能 图像分割 分割 计算机科学 分辨率(逻辑) 计算机视觉 基础(证据) 数字化病理学 污渍 任务(项目管理) 模式识别(心理学) 病理 医学 染色 工程类 考古 系统工程 历史
作者
Chong Wang,Yajie Wan,Shuxin Li,Kaili Qu,Xuezhi Zhou,Junjun He,Jing Ke,Yi Yu,Tianyun Wang,Yiqing Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3501352
摘要

Foundation models like the Segment Anything Model (SAM) have shown promising performance in general image segmentation tasks. However, their effectiveness is limited when applied to pathology images due to the inherent multi-scale structural complexity and staining heterogeneity. To address these challenges, we introduce SegAnyPath, a foundational model specifically designed for pathology image segmentation. SegAnyPath is trained on an extensive public pathology dataset comprising over 1.5 million images and 3.5 million masks. We propose a multi-scale proxy task to handle the diverse resolutions in pathology images, complementing the reconstruction objective in the supervised learning stage. To enhance segmentation performance across stain variations, we introduce a novel self-distillation scheme based on stain augmentations. Furthermore, we propose an innovative task-guided Mixture of Experts (MoE) architecture in the decoder of SegAnyPath for efficient management of distinct pathology segmentation tasks, including cell, tissue, and tumor segmentation. Experimental results demonstrate SegAnyPath's zero-shot generalization capability, achieving a Dice score of 0.6797 across multiple datasets and organs while maintaining consistent performance across varying staining styles and resolutions. In comparison, the fine-tuned SAM achieves a Dice score of only 0.5258 on the same external test sets, indicating a substantial 29.27% improvement by SegAnyPath. SegAnyPath has the potential to advance the field of pathology analysis and improve diagnostic accuracy in clinical settings. The code is available at https://github.com/wagnchogn/SegAnyPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助wpie99采纳,获得30
刚刚
丘比特应助111采纳,获得10
刚刚
迷人秋烟应助小苹果汤采纳,获得200
刚刚
huahuahua关注了科研通微信公众号
刚刚
龚嫦君完成签到,获得积分10
1秒前
g143完成签到,获得积分10
1秒前
风采发布了新的文献求助30
3秒前
李爱国应助SAIL采纳,获得30
3秒前
小七完成签到 ,获得积分20
5秒前
5秒前
帅气西牛完成签到,获得积分10
8秒前
9秒前
传奇3应助虚幻的青槐采纳,获得10
10秒前
11秒前
科研通AI5应助超级铃铛采纳,获得10
12秒前
111发布了新的文献求助10
14秒前
橙子慢慢来完成签到,获得积分10
14秒前
15秒前
完美世界应助xu采纳,获得10
17秒前
露露发布了新的文献求助10
17秒前
19秒前
大个应助风中亦玉采纳,获得10
19秒前
禾薇完成签到,获得积分10
21秒前
huahuahua发布了新的文献求助30
22秒前
22秒前
伊丽莎白完成签到,获得积分10
23秒前
研友_VZG7GZ应助李同学采纳,获得10
24秒前
wpie99发布了新的文献求助30
29秒前
wangmou完成签到,获得积分10
29秒前
科研通AI5应助江谷林采纳,获得10
33秒前
33秒前
Hello应助禾薇采纳,获得10
34秒前
科研通AI5应助踏实的芸遥采纳,获得10
35秒前
科研通AI5应助蒹葭采纳,获得10
36秒前
李同学发布了新的文献求助10
37秒前
37秒前
杭永程完成签到 ,获得积分10
40秒前
40秒前
博弈春秋完成签到,获得积分10
43秒前
大林发布了新的文献求助10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423