亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Polyploidization leads to salt stress resilience via ethylene signaling in citrus plants

生物 基因 转录组 拟南芥 转录因子 细胞生物学 基因组 染色质 表观遗传学 遗传学 基因表达 植物进化 植物 突变体
作者
Xin Song,Miao Zhang,Tingting Wang,Yao‐Yuan Duan,Jie Ren,Hu Gao,Yan‐Jie Fan,Qiang‐Ming Xia,Hui‐Xiang Cao,Kai‐Dong Xie,Xiao‐Meng Wu,Fei Zhang,Siqi Zhang,Ying Huang,Adnane Boualem,Abdelhafid Bendahmane,Feng‐Quan Tan,Wen‐Wu Guo
出处
期刊:New Phytologist [Wiley]
卷期号:246 (1): 176-191 被引量:17
标识
DOI:10.1111/nph.20428
摘要

Summary Polyploidization is a common occurrence in the evolutionary history of flowering plants, significantly contributing to their adaptability and diversity. However, the molecular mechanisms behind these adaptive advantages are not well understood. Through comprehensive phenotyping of diploid and tetraploid clones from Citrus and Poncirus genera, we discovered that genome doubling significantly enhances salt stress resilience. Epigenetic and transcriptomic analyses revealed that increased ethylene production in the roots of tetraploid plants was associated with hypomethylation and enhanced chromatin accessibility of the ACO1 gene. This increased ethylene production activates the transcription of reactive oxygen species scavenging genes and stress‐related hormone biosynthesis genes. Consequently, tetraploid plants exhibited superior root functionality under salt stress, maintaining improved cytosolic K + /Na + homeostasis. To genetically validate the link between salt stress resilience and ACO1 expression, we generated overexpression and knockout lines, confirming the central role of ACO1 expression regulation following genome doubling in salt stress resilience. Our work elucidates the molecular mechanisms underlying the role of genome doubling in stress resilience. We also highlight the importance of chromatin dynamics in fine‐tuning ethylene gene expression and activating salt stress resilience pathways, offering valuable insights into plant adaptation and crop genome evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助lngenuo采纳,获得30
10秒前
41秒前
41秒前
43秒前
Wei发布了新的文献求助10
48秒前
50秒前
Fairy发布了新的文献求助10
57秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
hb完成签到,获得积分10
1分钟前
紫熊完成签到,获得积分10
2分钟前
啸西风完成签到,获得积分10
2分钟前
孙严青完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
wanci应助野性的少司缘采纳,获得10
3分钟前
3分钟前
3分钟前
William完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Criminology34应助Zhangfu采纳,获得20
4分钟前
Aixx完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Zhangfu完成签到,获得积分10
5分钟前
王饱饱完成签到 ,获得积分10
5分钟前
6分钟前
雨巷发布了新的文献求助10
6分钟前
Una完成签到,获得积分10
6分钟前
雨巷完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139