亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Polyploidization leads to salt stress resilience via ethylene signaling in citrus plants

生物 基因 转录组 拟南芥 转录因子 细胞生物学 基因组 染色质 表观遗传学 遗传学 基因表达 植物进化 植物 突变体
作者
Xin Song,Miao Zhang,Tingting Wang,Yao‐Yuan Duan,Jie Ren,Hu Gao,Yan‐Jie Fan,Qiang‐Ming Xia,Hui‐Xiang Cao,Kai‐Dong Xie,Xiao‐Meng Wu,Fei Zhang,Siqi Zhang,Ying Huang,Adnane Boualem,Abdelhafid Bendahmane,Feng‐Quan Tan,Wen‐Wu Guo
出处
期刊:New Phytologist [Wiley]
卷期号:246 (1): 176-191 被引量:17
标识
DOI:10.1111/nph.20428
摘要

Summary Polyploidization is a common occurrence in the evolutionary history of flowering plants, significantly contributing to their adaptability and diversity. However, the molecular mechanisms behind these adaptive advantages are not well understood. Through comprehensive phenotyping of diploid and tetraploid clones from Citrus and Poncirus genera, we discovered that genome doubling significantly enhances salt stress resilience. Epigenetic and transcriptomic analyses revealed that increased ethylene production in the roots of tetraploid plants was associated with hypomethylation and enhanced chromatin accessibility of the ACO1 gene. This increased ethylene production activates the transcription of reactive oxygen species scavenging genes and stress‐related hormone biosynthesis genes. Consequently, tetraploid plants exhibited superior root functionality under salt stress, maintaining improved cytosolic K + /Na + homeostasis. To genetically validate the link between salt stress resilience and ACO1 expression, we generated overexpression and knockout lines, confirming the central role of ACO1 expression regulation following genome doubling in salt stress resilience. Our work elucidates the molecular mechanisms underlying the role of genome doubling in stress resilience. We also highlight the importance of chromatin dynamics in fine‐tuning ethylene gene expression and activating salt stress resilience pathways, offering valuable insights into plant adaptation and crop genome evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
3秒前
绝望的大学生完成签到,获得积分20
3秒前
5秒前
boom完成签到 ,获得积分10
7秒前
8秒前
wwww完成签到 ,获得积分0
8秒前
8秒前
cwj完成签到,获得积分10
9秒前
Vince发布了新的文献求助10
12秒前
wangran_778发布了新的文献求助10
14秒前
20秒前
doctor_quyi发布了新的文献求助10
23秒前
wangran_778完成签到,获得积分10
25秒前
27秒前
28秒前
李义志完成签到,获得积分10
31秒前
31秒前
佳佳发布了新的文献求助10
31秒前
啊哦发布了新的文献求助30
32秒前
今后应助李义志采纳,获得10
34秒前
科研通AI6应助黄黄黄采纳,获得10
34秒前
无极微光应助缓慢的藏鸟采纳,获得20
35秒前
贱小贱完成签到,获得积分10
35秒前
ZYP发布了新的文献求助10
38秒前
科研狗完成签到 ,获得积分10
39秒前
无花果应助好了没了采纳,获得10
39秒前
科研通AI6应助啊哦采纳,获得30
44秒前
黎娅完成签到 ,获得积分10
45秒前
47秒前
50秒前
好了没了完成签到,获得积分10
50秒前
挚智完成签到 ,获得积分10
52秒前
52秒前
好了没了发布了新的文献求助10
53秒前
lele完成签到,获得积分10
53秒前
迷路世立完成签到,获得积分10
54秒前
56秒前
FashionBoy应助vinss66home采纳,获得10
57秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264