Quick-and-Easy Validation of Protein–Ligand Binding Models Using Fragment-Based Semiempirical Quantum Chemistry

片段(逻辑) 趋同(经济学) 电子结构 计算机科学 量子 先验与后验 蛋白质配体 计算化学 化学 配体(生物化学) 统计物理学 算法 物理 量子力学 受体 生物化学 有机化学 哲学 认识论 经济 经济增长
作者
Paige Bowling,Dustin Broderick,John M. Herbert
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01987
摘要

Electronic structure calculations in enzymes converge very slowly with respect to the size of the model region that is described using quantum mechanics (QM), requiring hundreds of atoms to obtain converged results and exhibiting substantial sensitivity (at least in smaller models) to which amino acids are included in the QM region. As such, there is considerable interest in developing automated procedures to construct a QM model region based on well-defined criteria. However, testing such procedures is burdensome due to the cost of large-scale electronic structure calculations. Here, we show that semiempirical methods can be used as alternatives to density functional theory (DFT) to assess convergence in sequences of models generated by various automated protocols. The cost of these convergence tests is reduced even further by means of a many-body expansion. We use this approach to examine convergence (with respect to model size) of protein–ligand binding energies. Fragment-based semiempirical calculations afford well-converged interaction energies in a tiny fraction of the cost required for DFT calculations. Two-body interactions between the ligand and single-residue amino acid fragments afford a low-cost way to construct a "QM-informed" enzyme model of reduced size, furnishing an automatable active-site model-building procedure. This provides a streamlined, user-friendly approach for constructing ligand binding-site models that requires neither a priori information nor manual adjustments. Extension to model-building for thermochemical calculations should be straightforward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
124应助闪闪采纳,获得10
刚刚
星辰大海应助albertxin采纳,获得10
刚刚
安静严青发布了新的文献求助10
1秒前
咩咩兔发布了新的文献求助10
1秒前
Astro完成签到,获得积分10
2秒前
Lenacici发布了新的文献求助10
2秒前
3秒前
4秒前
自觉惜蕊完成签到 ,获得积分10
5秒前
5秒前
北辰完成签到,获得积分10
6秒前
8秒前
8秒前
小蝶发布了新的文献求助10
8秒前
mmmmm发布了新的文献求助10
9秒前
甜甜玫瑰应助魔法翼龙采纳,获得10
9秒前
10秒前
科研通AI2S应助热情的向松采纳,获得10
10秒前
yar应助科研人员采纳,获得10
10秒前
三余发布了新的文献求助10
10秒前
蛋堡发布了新的文献求助10
11秒前
华仔应助荔枝多酚采纳,获得10
12秒前
匆匆完成签到,获得积分10
12秒前
12秒前
12秒前
ashore完成签到,获得积分10
12秒前
谨慎凡桃完成签到,获得积分10
13秒前
猛磕CO2的小生完成签到,获得积分10
13秒前
fff123完成签到,获得积分10
13秒前
故笺发布了新的文献求助10
14秒前
14秒前
gj2221423发布了新的文献求助10
14秒前
叶子的叶完成签到,获得积分10
14秒前
谨慎凡桃发布了新的文献求助10
15秒前
15秒前
lijingwen发布了新的文献求助10
15秒前
bingbing完成签到 ,获得积分10
16秒前
ido发布了新的文献求助10
16秒前
kkkwok完成签到,获得积分10
16秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306734
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497350
捐赠科研通 2614699
什么是DOI,文献DOI怎么找? 1428415
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259